Cargando…
Comparative analysis of the kinomes of Plasmodium falciparum, Plasmodium vivax and their host Homo sapiens
BACKGROUND: Novel antimalarials should be effective across all species of malaria parasites that infect humans, especially the two species that bear the most impact, Plasmodium falciparum and Plasmodium vivax. Protein kinases encoded by pathogens, as well as host kinases required for survival of int...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8960227/ https://www.ncbi.nlm.nih.gov/pubmed/35346035 http://dx.doi.org/10.1186/s12864-022-08457-0 |
Sumario: | BACKGROUND: Novel antimalarials should be effective across all species of malaria parasites that infect humans, especially the two species that bear the most impact, Plasmodium falciparum and Plasmodium vivax. Protein kinases encoded by pathogens, as well as host kinases required for survival of intracellular pathogens, carry considerable potential as targets for antimalarial intervention (Adderley et al. Trends Parasitol 37:508–524, 2021; Wei et al. Cell Rep Med 2:100423, 2021). To date, no comprehensive P. vivax kinome assembly has been conducted; and the P. falciparum kinome, first assembled in 2004, requires an update. The present study, aimed to fill these gaps, utilises a recently published structurally-validated multiple sequence alignment (MSA) of the human kinome (Modi et al. Sci Rep 9:19790, 2019). This MSA is used as a scaffold to assist the alignment of all protein kinase sequences from P. falciparum and P. vivax, and (where possible) their assignment to specific kinase groups/families. RESULTS: We were able to assign six P. falciparum previously classified as OPK or ‘orphans’ (i.e. with no clear phylogenetic relation to any of the established ePK groups) to one of the aforementioned ePK groups. Direct phylogenetic comparison established that despite an overall high level of similarity between the P. falciparum and P. vivax kinomes, which will help in selecting targets for intervention, there are differences that may underlie the biological specificities of these species. Furthermore, we highlight a number of Plasmodium kinases that have a surprisingly high level of similarity with their human counterparts and therefore not well suited as targets for drug discovery. CONCLUSIONS: Direct comparison of the kinomes of Homo sapiens, P. falciparum and P. vivax sheds additional light on the previously documented divergence of many P. falciparum and P. vivax kinases from those of their human host. We provide the first direct kinome comparison between the phylogenetically distinct species of P. falciparum and P. vivax, illustrating the key similarities and differences which must be considered in the context of kinase-directed antimalarial drug discovery, and discuss the divergences and similarities between the human and Plasmodium kinomes to inform future searches for selective antimalarial intervention. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12864-022-08457-0. |
---|