Cargando…
Mammographically occult breast cancers detected with AI-based diagnosis supporting software: clinical and histopathologic characteristics
BACKGROUND: To demonstrate the value of an artificial intelligence (AI) software in the detection of mammographically occult breast cancers and to determine the clinicopathologic patterns of the cancers additionally detected using the AI software. METHODS: By retrospectively reviewing our institutio...
Autores principales: | Kim, Hee Jeong, Kim, Hak Hee, Kim, Ki Hwan, Choi, Woo Jung, Chae, Eun Young, Shin, Hee Jung, Cha, Joo Hee, Shim, Woo Hyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8960489/ https://www.ncbi.nlm.nih.gov/pubmed/35347508 http://dx.doi.org/10.1186/s13244-022-01183-x |
Ejemplares similares
-
Artificial intelligence-based computer-assisted detection/diagnosis (AI-CAD) for screening mammography: Outcomes of AI-CAD in the mammographic interpretation workflow
por: Yoon, Jung Hyun, et al.
Publicado: (2023) -
Sonographic features that can be used to differentiate between small triple-negative breast cancer and fibroadenoma
por: Yoon, Ga Young, et al.
Publicado: (2018) -
Screening mammography for second breast cancers in women with history of early-stage breast cancer: factors and causes associated with non-detection
por: Yeom, Yoo Kyung, et al.
Publicado: (2019) -
Diagnostic performance of standard breast MR imaging compared to dedicated axillary MR imaging in the evaluation of axillary lymph node
por: Ha, Su Min, et al.
Publicado: (2020) -
The role of MRI and clinicopathologic features in predicting the invasive component of biopsy-confirmed ductal carcinoma in situ
por: Yoon, Ga Young, et al.
Publicado: (2020)