Cargando…
Comparative performance of fully-automated and semi-automated artificial intelligence methods for the detection of clinically significant prostate cancer on MRI: a systematic review
OBJECTIVES: We systematically reviewed the current literature evaluating the ability of fully-automated deep learning (DL) and semi-automated traditional machine learning (TML) MRI-based artificial intelligence (AI) methods to differentiate clinically significant prostate cancer (csPCa) from indolen...
Autores principales: | Sushentsev, Nikita, Moreira Da Silva, Nadia, Yeung, Michael, Barrett, Tristan, Sala, Evis, Roberts, Michael, Rundo, Leonardo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8960511/ https://www.ncbi.nlm.nih.gov/pubmed/35347462 http://dx.doi.org/10.1186/s13244-022-01199-3 |
Ejemplares similares
-
MRI-derived radiomics model for baseline prediction of prostate cancer progression on active surveillance
por: Sushentsev, Nikita, et al.
Publicado: (2021) -
Serial changes in tumour measurements and apparent diffusion coefficients in prostate cancer patients on active surveillance with and without histopathological progression
por: Sushentsev, Nikita, et al.
Publicado: (2022) -
Comparative performance of MRI-derived PRECISE scores and delta-radiomics models for the prediction of prostate cancer progression in patients on active surveillance
por: Sushentsev, Nikita, et al.
Publicado: (2021) -
Three-dimensional MRI Evaluation of the Effect of Bladder Volume on Prostate Translocation and Distortion
por: Snoj, Ziga, et al.
Publicado: (2020) -
Fully and semi-automated shape differentiation in NGSolve
por: Gangl, Peter, et al.
Publicado: (2020)