Cargando…

The effect of lesion filling on brain network analysis in multiple sclerosis using structural magnetic resonance imaging

BACKGROUND: Graph theoretical network analysis with structural magnetic resonance imaging (MRI) of multiple sclerosis (MS) patients can be used to assess subtle changes in brain networks. However, the presence of multiple focal brain lesions might impair the accuracy of automatic tissue segmentation...

Descripción completa

Detalles Bibliográficos
Autores principales: van der Weijden, Chris W. J., Pitombeira, Milena S., Haveman, Yudith R. A., Sanchez-Catasus, Carlos A., Campanholo, Kenia R., Kolinger, Guilherme D., Rimkus, Carolina M., Buchpiguel, Carlos A., Dierckx, Rudi A. J. O., Renken, Remco J., Meilof, Jan F., de Vries, Erik F. J., de Paula Faria, Daniele
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Vienna 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8960512/
https://www.ncbi.nlm.nih.gov/pubmed/35347460
http://dx.doi.org/10.1186/s13244-022-01198-4
_version_ 1784677395135987712
author van der Weijden, Chris W. J.
Pitombeira, Milena S.
Haveman, Yudith R. A.
Sanchez-Catasus, Carlos A.
Campanholo, Kenia R.
Kolinger, Guilherme D.
Rimkus, Carolina M.
Buchpiguel, Carlos A.
Dierckx, Rudi A. J. O.
Renken, Remco J.
Meilof, Jan F.
de Vries, Erik F. J.
de Paula Faria, Daniele
author_facet van der Weijden, Chris W. J.
Pitombeira, Milena S.
Haveman, Yudith R. A.
Sanchez-Catasus, Carlos A.
Campanholo, Kenia R.
Kolinger, Guilherme D.
Rimkus, Carolina M.
Buchpiguel, Carlos A.
Dierckx, Rudi A. J. O.
Renken, Remco J.
Meilof, Jan F.
de Vries, Erik F. J.
de Paula Faria, Daniele
author_sort van der Weijden, Chris W. J.
collection PubMed
description BACKGROUND: Graph theoretical network analysis with structural magnetic resonance imaging (MRI) of multiple sclerosis (MS) patients can be used to assess subtle changes in brain networks. However, the presence of multiple focal brain lesions might impair the accuracy of automatic tissue segmentation methods, and hamper the performance of graph theoretical network analysis. Applying “lesion filling” by substituting the voxel intensities of a lesion with the voxel intensities of nearby voxels, thus creating an image devoid of lesions, might improve segmentation and graph theoretical network analysis. This study aims to determine if brain networks are different between MS subtypes and healthy controls (HC) and if the assessment of these differences is affected by lesion filling. METHODS: The study included 49 MS patients and 19 HC that underwent a T1w, and T2w-FLAIR MRI scan. Graph theoretical network analysis was performed from grey matter fractions extracted from the original T1w-images and T1w-images after lesion filling. RESULTS: Artefacts in lesion-filled T1w images correlated positively with total lesion volume (r = 0.84, p < 0.001) and had a major impact on grey matter segmentation accuracy. Differences in sensitivity for network alterations were observed between original T1w data and after application of lesion filling: graph theoretical network analysis obtained from lesion-filled T1w images produced more differences in network organization in MS patients. CONCLUSION: Lesion filling might reduce variability across subjects resulting in an increased detection rate of network alterations in MS, but also induces significant artefacts, and therefore should be applied cautiously especially in individuals with higher lesions loads. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13244-022-01198-4.
format Online
Article
Text
id pubmed-8960512
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Springer Vienna
record_format MEDLINE/PubMed
spelling pubmed-89605122022-04-12 The effect of lesion filling on brain network analysis in multiple sclerosis using structural magnetic resonance imaging van der Weijden, Chris W. J. Pitombeira, Milena S. Haveman, Yudith R. A. Sanchez-Catasus, Carlos A. Campanholo, Kenia R. Kolinger, Guilherme D. Rimkus, Carolina M. Buchpiguel, Carlos A. Dierckx, Rudi A. J. O. Renken, Remco J. Meilof, Jan F. de Vries, Erik F. J. de Paula Faria, Daniele Insights Imaging Original Article BACKGROUND: Graph theoretical network analysis with structural magnetic resonance imaging (MRI) of multiple sclerosis (MS) patients can be used to assess subtle changes in brain networks. However, the presence of multiple focal brain lesions might impair the accuracy of automatic tissue segmentation methods, and hamper the performance of graph theoretical network analysis. Applying “lesion filling” by substituting the voxel intensities of a lesion with the voxel intensities of nearby voxels, thus creating an image devoid of lesions, might improve segmentation and graph theoretical network analysis. This study aims to determine if brain networks are different between MS subtypes and healthy controls (HC) and if the assessment of these differences is affected by lesion filling. METHODS: The study included 49 MS patients and 19 HC that underwent a T1w, and T2w-FLAIR MRI scan. Graph theoretical network analysis was performed from grey matter fractions extracted from the original T1w-images and T1w-images after lesion filling. RESULTS: Artefacts in lesion-filled T1w images correlated positively with total lesion volume (r = 0.84, p < 0.001) and had a major impact on grey matter segmentation accuracy. Differences in sensitivity for network alterations were observed between original T1w data and after application of lesion filling: graph theoretical network analysis obtained from lesion-filled T1w images produced more differences in network organization in MS patients. CONCLUSION: Lesion filling might reduce variability across subjects resulting in an increased detection rate of network alterations in MS, but also induces significant artefacts, and therefore should be applied cautiously especially in individuals with higher lesions loads. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13244-022-01198-4. Springer Vienna 2022-03-28 /pmc/articles/PMC8960512/ /pubmed/35347460 http://dx.doi.org/10.1186/s13244-022-01198-4 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/ Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Original Article
van der Weijden, Chris W. J.
Pitombeira, Milena S.
Haveman, Yudith R. A.
Sanchez-Catasus, Carlos A.
Campanholo, Kenia R.
Kolinger, Guilherme D.
Rimkus, Carolina M.
Buchpiguel, Carlos A.
Dierckx, Rudi A. J. O.
Renken, Remco J.
Meilof, Jan F.
de Vries, Erik F. J.
de Paula Faria, Daniele
The effect of lesion filling on brain network analysis in multiple sclerosis using structural magnetic resonance imaging
title The effect of lesion filling on brain network analysis in multiple sclerosis using structural magnetic resonance imaging
title_full The effect of lesion filling on brain network analysis in multiple sclerosis using structural magnetic resonance imaging
title_fullStr The effect of lesion filling on brain network analysis in multiple sclerosis using structural magnetic resonance imaging
title_full_unstemmed The effect of lesion filling on brain network analysis in multiple sclerosis using structural magnetic resonance imaging
title_short The effect of lesion filling on brain network analysis in multiple sclerosis using structural magnetic resonance imaging
title_sort effect of lesion filling on brain network analysis in multiple sclerosis using structural magnetic resonance imaging
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8960512/
https://www.ncbi.nlm.nih.gov/pubmed/35347460
http://dx.doi.org/10.1186/s13244-022-01198-4
work_keys_str_mv AT vanderweijdenchriswj theeffectoflesionfillingonbrainnetworkanalysisinmultiplesclerosisusingstructuralmagneticresonanceimaging
AT pitombeiramilenas theeffectoflesionfillingonbrainnetworkanalysisinmultiplesclerosisusingstructuralmagneticresonanceimaging
AT havemanyudithra theeffectoflesionfillingonbrainnetworkanalysisinmultiplesclerosisusingstructuralmagneticresonanceimaging
AT sanchezcatasuscarlosa theeffectoflesionfillingonbrainnetworkanalysisinmultiplesclerosisusingstructuralmagneticresonanceimaging
AT campanholokeniar theeffectoflesionfillingonbrainnetworkanalysisinmultiplesclerosisusingstructuralmagneticresonanceimaging
AT kolingerguilhermed theeffectoflesionfillingonbrainnetworkanalysisinmultiplesclerosisusingstructuralmagneticresonanceimaging
AT rimkuscarolinam theeffectoflesionfillingonbrainnetworkanalysisinmultiplesclerosisusingstructuralmagneticresonanceimaging
AT buchpiguelcarlosa theeffectoflesionfillingonbrainnetworkanalysisinmultiplesclerosisusingstructuralmagneticresonanceimaging
AT dierckxrudiajo theeffectoflesionfillingonbrainnetworkanalysisinmultiplesclerosisusingstructuralmagneticresonanceimaging
AT renkenremcoj theeffectoflesionfillingonbrainnetworkanalysisinmultiplesclerosisusingstructuralmagneticresonanceimaging
AT meilofjanf theeffectoflesionfillingonbrainnetworkanalysisinmultiplesclerosisusingstructuralmagneticresonanceimaging
AT devrieserikfj theeffectoflesionfillingonbrainnetworkanalysisinmultiplesclerosisusingstructuralmagneticresonanceimaging
AT depaulafariadaniele theeffectoflesionfillingonbrainnetworkanalysisinmultiplesclerosisusingstructuralmagneticresonanceimaging
AT vanderweijdenchriswj effectoflesionfillingonbrainnetworkanalysisinmultiplesclerosisusingstructuralmagneticresonanceimaging
AT pitombeiramilenas effectoflesionfillingonbrainnetworkanalysisinmultiplesclerosisusingstructuralmagneticresonanceimaging
AT havemanyudithra effectoflesionfillingonbrainnetworkanalysisinmultiplesclerosisusingstructuralmagneticresonanceimaging
AT sanchezcatasuscarlosa effectoflesionfillingonbrainnetworkanalysisinmultiplesclerosisusingstructuralmagneticresonanceimaging
AT campanholokeniar effectoflesionfillingonbrainnetworkanalysisinmultiplesclerosisusingstructuralmagneticresonanceimaging
AT kolingerguilhermed effectoflesionfillingonbrainnetworkanalysisinmultiplesclerosisusingstructuralmagneticresonanceimaging
AT rimkuscarolinam effectoflesionfillingonbrainnetworkanalysisinmultiplesclerosisusingstructuralmagneticresonanceimaging
AT buchpiguelcarlosa effectoflesionfillingonbrainnetworkanalysisinmultiplesclerosisusingstructuralmagneticresonanceimaging
AT dierckxrudiajo effectoflesionfillingonbrainnetworkanalysisinmultiplesclerosisusingstructuralmagneticresonanceimaging
AT renkenremcoj effectoflesionfillingonbrainnetworkanalysisinmultiplesclerosisusingstructuralmagneticresonanceimaging
AT meilofjanf effectoflesionfillingonbrainnetworkanalysisinmultiplesclerosisusingstructuralmagneticresonanceimaging
AT devrieserikfj effectoflesionfillingonbrainnetworkanalysisinmultiplesclerosisusingstructuralmagneticresonanceimaging
AT depaulafariadaniele effectoflesionfillingonbrainnetworkanalysisinmultiplesclerosisusingstructuralmagneticresonanceimaging