Cargando…
DCAU-Net: dense convolutional attention U-Net for segmentation of intracranial aneurysm images
Segmentation of intracranial aneurysm images acquired using magnetic resonance angiography (MRA) is essential for medical auxiliary treatments, which can effectively prevent subarachnoid hemorrhages. This paper proposes an image segmentation model based on a dense convolutional attention U-Net, whic...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8960533/ https://www.ncbi.nlm.nih.gov/pubmed/35344098 http://dx.doi.org/10.1186/s42492-022-00105-4 |
Sumario: | Segmentation of intracranial aneurysm images acquired using magnetic resonance angiography (MRA) is essential for medical auxiliary treatments, which can effectively prevent subarachnoid hemorrhages. This paper proposes an image segmentation model based on a dense convolutional attention U-Net, which fuses deep and rich semantic information with shallow-detail information for adaptive and accurate segmentation of MRA-acquired aneurysm images with large size differences. The U-Net model serves as a backbone, combining dense block and convolution block attention module (CBAM). The dense block is composed of a batch normalization layer, an randomly rectified linear unit activation function, and a convolutional layer, for mitigation of vanishing gradients, for multiplexing of aneurysm features, and for improving the network training efficiency. The CBAM is composed of a channel attention module and a spatial attention module, improving the segmentation performance of feature discrimination and enhancing the acquisition of key feature information. Owing to the large variation of aneurysm sizes, multi-scale fusion is performed during up-sampling, for adaptive segmentation of MRA-acquired aneurysm images. The model was tested on the MICCAI 2020 ADAM dataset, and its generalizability was validated on the clinical aneurysm dataset (aneurysm sizes: < 3 mm, 3–7 mm, and > 7 mm) supplied by the Affiliated Hospital of Qingdao University. A good clinical application segmentation performance was demonstrated. |
---|