Cargando…
DCAU-Net: dense convolutional attention U-Net for segmentation of intracranial aneurysm images
Segmentation of intracranial aneurysm images acquired using magnetic resonance angiography (MRA) is essential for medical auxiliary treatments, which can effectively prevent subarachnoid hemorrhages. This paper proposes an image segmentation model based on a dense convolutional attention U-Net, whic...
Autores principales: | Yuan, Wenwen, Peng, Yanjun, Guo, Yanfei, Ren, Yande, Xue, Qianwen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8960533/ https://www.ncbi.nlm.nih.gov/pubmed/35344098 http://dx.doi.org/10.1186/s42492-022-00105-4 |
Ejemplares similares
-
Correction: DCAU-Net: dense convolutional attention U-Net for segmentation of intracranial aneurysm images
por: Yuan, Wenwen, et al.
Publicado: (2022) -
Attention-augmented U-Net (AA-U-Net) for semantic segmentation
por: Rajamani, Kumar T., et al.
Publicado: (2022) -
Dilated Dense U-Net for Infant Hippocampus Subfield Segmentation
por: Zhu, Hancan, et al.
Publicado: (2019) -
SCAU-Net: Spatial-Channel Attention U-Net for Gland Segmentation
por: Zhao, Peng, et al.
Publicado: (2020) -
Dense U-net Based on Patch-Based Learning for Retinal Vessel Segmentation
por: Wang, Chang, et al.
Publicado: (2019)