Cargando…
Prediction of the Fundus Tessellation Severity With Machine Learning Methods
PURPOSE: To predict the fundus tessellation (FT) severity with machine learning methods. METHODS: A population-based cross-sectional study with 3,468 individuals (mean age of 64.6 ± 9.8 years) based on Beijing Eye Study 2011. Participants underwent detailed ophthalmic examinations including fundus i...
Autores principales: | Shao, Lei, Zhang, Xiaomei, Hu, Teng, Chen, Yang, Zhang, Chuan, Dong, Li, Ling, Saiguang, Dong, Zhou, Zhou, Wen Da, Zhang, Rui Heng, Qin, Lei, Wei, Wen Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8960643/ https://www.ncbi.nlm.nih.gov/pubmed/35360710 http://dx.doi.org/10.3389/fmed.2022.817114 |
Ejemplares similares
-
Quantitative Assessment of Fundus Tessellated Density and Associated Factors in Fundus Images Using Artificial Intelligence
por: Shao, Lei, et al.
Publicado: (2021) -
Fundus Tessellated Density Assessed by Deep Learning in Primary School Children
por: Huang, Dan, et al.
Publicado: (2023) -
Prevalence of Fundus Tessellation and Its Screening Based on Artificial Intelligence in Chinese Children: the Nanjing Eye Study
por: Huang, Dan, et al.
Publicado: (2023) -
Characteristics of Fundal Changes in Fundus Tessellation in Young Adults
por: Lyu, Hanyi, et al.
Publicado: (2021) -
Long-term Progression and Risk Factors of Fundus Tessellation in the Beijing Eye Study
por: Yan, Yan Ni, et al.
Publicado: (2018)