Cargando…
A new intelligent bearing fault diagnosis model based on triplet network and SVM
Separating sensitive characteristic signals from original vibration data is an important challenge for rolling bearing fault diagnosis. Because it is difficult to obtain large number of damaged bearings, Rolling bearing fault datasets are often small sample datasets. For the classification of small...
Autores principales: | Yang, Kaisi, Zhao, Lianyu, Wang, Chenglin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8960866/ https://www.ncbi.nlm.nih.gov/pubmed/35347163 http://dx.doi.org/10.1038/s41598-022-08956-w |
Ejemplares similares
-
Rolling Bearing Fault Diagnosis Based on WGWOA-VMD-SVM
por: Zhou, Junbo, et al.
Publicado: (2022) -
Rolling Bearing Fault Diagnosis Based on VMD-MPE and PSO-SVM
por: Ye, Maoyou, et al.
Publicado: (2021) -
Bayesian-Optimized Hybrid Kernel SVM for Rolling Bearing Fault Diagnosis
por: Song, Xinmin, et al.
Publicado: (2023) -
Application of ICEEMDAN Energy Entropy and AFSA-SVM for Fault Diagnosis of Hoist Sheave Bearing
por: Kou, Ziming, et al.
Publicado: (2020) -
Triplet Loss Guided Adversarial Domain Adaptation for Bearing Fault Diagnosis
por: Wang, Xiaodong, et al.
Publicado: (2020)