Cargando…
Prediction of drug candidates for clear cell renal cell carcinoma using a systems biology-based drug repositioning approach
BACKGROUND: The response rates of the clinical chemotherapies are still low in clear cell renal cell carcinoma (ccRCC). Computational drug repositioning is a promising strategy to discover new uses for existing drugs to treat patients who cannot get benefits from clinical drugs. METHODS: We proposed...
Autores principales: | Li, Xiangyu, Shong, Koeun, Kim, Woonghee, Yuan, Meng, Yang, Hong, Sato, Yusuke, Kume, Haruki, Ogawa, Seishi, Turkez, Hasan, Shoaie, Saeed, Boren, Jan, Nielsen, Jens, Uhlen, Mathias, Zhang, Cheng, Mardinoglu, Adil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8960981/ https://www.ncbi.nlm.nih.gov/pubmed/35339898 http://dx.doi.org/10.1016/j.ebiom.2022.103963 |
Ejemplares similares
-
Stratification of patients with clear cell renal cell carcinoma to facilitate drug repositioning
por: Li, Xiangyu, et al.
Publicado: (2021) -
A Gene Co-Expression Network-Based Drug Repositioning Approach Identifies Candidates for Treatment of Hepatocellular Carcinoma
por: Yuan, Meng, et al.
Publicado: (2022) -
Drug repositioning targeting glutaminase reveals drug candidates for the treatment of Alzheimer’s disease patients
por: Bayraktar, Abdulahad, et al.
Publicado: (2023) -
Classification of clear cell renal cell carcinoma based on PKM alternative splicing
por: Li, Xiangyu, et al.
Publicado: (2020) -
Applications of Genome-Wide Screening and Systems Biology Approaches in Drug Repositioning
por: Mohammadi, Elyas, et al.
Publicado: (2020)