Cargando…
Predicting Nanoparticle Delivery to Tumors Using Machine Learning and Artificial Intelligence Approaches
BACKGROUND: Low delivery efficiency of nanoparticles (NPs) to the tumor is a critical barrier in the field of cancer nanomedicine. Strategies on how to improve NP tumor delivery efficiency remain to be determined. METHODS: This study analyzed the roles of NP physicochemical properties, tumor models,...
Autores principales: | Lin, Zhoumeng, Chou, Wei-Chun, Cheng, Yi-Hsien, He, Chunla, Monteiro-Riviere, Nancy A, Riviere, Jim E |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8961007/ https://www.ncbi.nlm.nih.gov/pubmed/35360005 http://dx.doi.org/10.2147/IJN.S344208 |
Ejemplares similares
-
Meta-Analysis
of Nanoparticle Delivery to Tumors Using
a Physiologically Based Pharmacokinetic Modeling and Simulation Approach
por: Cheng, Yi-Hsien, et al.
Publicado: (2020) -
Meta-Analysis
of Nanoparticle Distribution in Tumors
and Major Organs in Tumor-Bearing Mice
por: Chen, Qiran, et al.
Publicado: (2023) -
Development of a multi-route physiologically based pharmacokinetic (PBPK) model for nanomaterials: a comparison between a traditional versus a new route-specific approach using gold nanoparticles in rats
por: Chou, Wei-Chun, et al.
Publicado: (2022) -
Machine learning: an artificial intelligence approach
por: Anderson, John, et al.
Publicado: (1983) -
Precision Psychiatry Applications with Pharmacogenomics: Artificial Intelligence and Machine Learning Approaches
por: Lin, Eugene, et al.
Publicado: (2020)