Cargando…
Low-Light Image Enhancement Network Based on Recursive Network
In low-light environments, image acquisition devices do not obtain sufficient light sources, resulting in low brightness and contrast of images, which poses a great obstacle for other computer vision tasks to be performed. To enable other vision tasks to be performed smoothly, it is essential to enh...
Autores principales: | Liu, Fangjin, Hua, Zhen, Li, Jinjiang, Fan, Linwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8961027/ https://www.ncbi.nlm.nih.gov/pubmed/35360834 http://dx.doi.org/10.3389/fnbot.2022.836551 |
Ejemplares similares
-
Attention-Guided Multi-Scale Feature Fusion Network for Low-Light Image Enhancement
por: Cui, HengShuai, et al.
Publicado: (2022) -
Transformer-based progressive residual network for single image dehazing
por: Yang, Zhe, et al.
Publicado: (2022) -
A Novel DenseNet Generative Adversarial Network for Heterogenous Low-Light Image Enhancement
por: Zhang, Jingsi, et al.
Publicado: (2021) -
A scalable implementation of the recursive least-squares algorithm for training spiking neural networks
por: Arthur, Benjamin J., et al.
Publicado: (2023) -
Deeply Recursive Low- and High-Frequency Fusing Networks for Single Image Super-Resolution
por: Yang, Cheng, et al.
Publicado: (2020)