Cargando…

An optimized ChIP‐Seq framework for profiling histone modifications in Chromochloris zofingiensis

The eukaryotic green alga Chromochloris zofingiensis is a reference organism for studying carbon partitioning and a promising candidate for the production of biofuel precursors. Recent transcriptome profiling transformed our understanding of its biology and generally algal biology, but epigenetic re...

Descripción completa

Detalles Bibliográficos
Autores principales: Strenkert, Daniela, Mingay, Matthew, Schmollinger, Stefan, Chen, Cindy, O'Malley, Ronan C., Merchant, Sabeeha S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8961045/
https://www.ncbi.nlm.nih.gov/pubmed/35382117
http://dx.doi.org/10.1002/pld3.392
_version_ 1784677513552723968
author Strenkert, Daniela
Mingay, Matthew
Schmollinger, Stefan
Chen, Cindy
O'Malley, Ronan C.
Merchant, Sabeeha S.
author_facet Strenkert, Daniela
Mingay, Matthew
Schmollinger, Stefan
Chen, Cindy
O'Malley, Ronan C.
Merchant, Sabeeha S.
author_sort Strenkert, Daniela
collection PubMed
description The eukaryotic green alga Chromochloris zofingiensis is a reference organism for studying carbon partitioning and a promising candidate for the production of biofuel precursors. Recent transcriptome profiling transformed our understanding of its biology and generally algal biology, but epigenetic regulation remains understudied and represents a fundamental gap in our understanding of algal gene expression. Chromatin immunoprecipitation followed by deep sequencing (ChIP‐Seq) is a powerful tool for the discovery of such mechanisms, by identifying genome‐wide histone modification patterns and transcription factor‐binding sites alike. Here, we established a ChIP‐Seq framework for Chr. zofingiensis yielding over 20 million high‐quality reads per sample. The most critical steps in a ChIP experiment were optimized, including DNA shearing to obtain an average DNA fragment size of 250 bp and assessment of the recommended formaldehyde concentration for optimal DNA–protein cross‐linking. We used this ChIP‐Seq framework to generate a genome‐wide map of the H3K4me3 distribution pattern and to integrate these data with matching RNA‐Seq data. In line with observations from other organisms, H3K4me3 marks predominantly transcription start sites of genes. Our H3K4me3 ChIP‐Seq data will pave the way for improved genome structural annotation in the emerging reference alga Chr. zofingiensis.
format Online
Article
Text
id pubmed-8961045
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-89610452022-04-04 An optimized ChIP‐Seq framework for profiling histone modifications in Chromochloris zofingiensis Strenkert, Daniela Mingay, Matthew Schmollinger, Stefan Chen, Cindy O'Malley, Ronan C. Merchant, Sabeeha S. Plant Direct Original Research The eukaryotic green alga Chromochloris zofingiensis is a reference organism for studying carbon partitioning and a promising candidate for the production of biofuel precursors. Recent transcriptome profiling transformed our understanding of its biology and generally algal biology, but epigenetic regulation remains understudied and represents a fundamental gap in our understanding of algal gene expression. Chromatin immunoprecipitation followed by deep sequencing (ChIP‐Seq) is a powerful tool for the discovery of such mechanisms, by identifying genome‐wide histone modification patterns and transcription factor‐binding sites alike. Here, we established a ChIP‐Seq framework for Chr. zofingiensis yielding over 20 million high‐quality reads per sample. The most critical steps in a ChIP experiment were optimized, including DNA shearing to obtain an average DNA fragment size of 250 bp and assessment of the recommended formaldehyde concentration for optimal DNA–protein cross‐linking. We used this ChIP‐Seq framework to generate a genome‐wide map of the H3K4me3 distribution pattern and to integrate these data with matching RNA‐Seq data. In line with observations from other organisms, H3K4me3 marks predominantly transcription start sites of genes. Our H3K4me3 ChIP‐Seq data will pave the way for improved genome structural annotation in the emerging reference alga Chr. zofingiensis. John Wiley and Sons Inc. 2022-03-28 /pmc/articles/PMC8961045/ /pubmed/35382117 http://dx.doi.org/10.1002/pld3.392 Text en © 2022 The Authors. Plant Direct published by American Society of Plant Biologists and the Society for Experimental Biology and John Wiley & Sons Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Original Research
Strenkert, Daniela
Mingay, Matthew
Schmollinger, Stefan
Chen, Cindy
O'Malley, Ronan C.
Merchant, Sabeeha S.
An optimized ChIP‐Seq framework for profiling histone modifications in Chromochloris zofingiensis
title An optimized ChIP‐Seq framework for profiling histone modifications in Chromochloris zofingiensis
title_full An optimized ChIP‐Seq framework for profiling histone modifications in Chromochloris zofingiensis
title_fullStr An optimized ChIP‐Seq framework for profiling histone modifications in Chromochloris zofingiensis
title_full_unstemmed An optimized ChIP‐Seq framework for profiling histone modifications in Chromochloris zofingiensis
title_short An optimized ChIP‐Seq framework for profiling histone modifications in Chromochloris zofingiensis
title_sort optimized chip‐seq framework for profiling histone modifications in chromochloris zofingiensis
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8961045/
https://www.ncbi.nlm.nih.gov/pubmed/35382117
http://dx.doi.org/10.1002/pld3.392
work_keys_str_mv AT strenkertdaniela anoptimizedchipseqframeworkforprofilinghistonemodificationsinchromochloriszofingiensis
AT mingaymatthew anoptimizedchipseqframeworkforprofilinghistonemodificationsinchromochloriszofingiensis
AT schmollingerstefan anoptimizedchipseqframeworkforprofilinghistonemodificationsinchromochloriszofingiensis
AT chencindy anoptimizedchipseqframeworkforprofilinghistonemodificationsinchromochloriszofingiensis
AT omalleyronanc anoptimizedchipseqframeworkforprofilinghistonemodificationsinchromochloriszofingiensis
AT merchantsabeehas anoptimizedchipseqframeworkforprofilinghistonemodificationsinchromochloriszofingiensis
AT strenkertdaniela optimizedchipseqframeworkforprofilinghistonemodificationsinchromochloriszofingiensis
AT mingaymatthew optimizedchipseqframeworkforprofilinghistonemodificationsinchromochloriszofingiensis
AT schmollingerstefan optimizedchipseqframeworkforprofilinghistonemodificationsinchromochloriszofingiensis
AT chencindy optimizedchipseqframeworkforprofilinghistonemodificationsinchromochloriszofingiensis
AT omalleyronanc optimizedchipseqframeworkforprofilinghistonemodificationsinchromochloriszofingiensis
AT merchantsabeehas optimizedchipseqframeworkforprofilinghistonemodificationsinchromochloriszofingiensis