Cargando…
An optimized ChIP‐Seq framework for profiling histone modifications in Chromochloris zofingiensis
The eukaryotic green alga Chromochloris zofingiensis is a reference organism for studying carbon partitioning and a promising candidate for the production of biofuel precursors. Recent transcriptome profiling transformed our understanding of its biology and generally algal biology, but epigenetic re...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8961045/ https://www.ncbi.nlm.nih.gov/pubmed/35382117 http://dx.doi.org/10.1002/pld3.392 |
_version_ | 1784677513552723968 |
---|---|
author | Strenkert, Daniela Mingay, Matthew Schmollinger, Stefan Chen, Cindy O'Malley, Ronan C. Merchant, Sabeeha S. |
author_facet | Strenkert, Daniela Mingay, Matthew Schmollinger, Stefan Chen, Cindy O'Malley, Ronan C. Merchant, Sabeeha S. |
author_sort | Strenkert, Daniela |
collection | PubMed |
description | The eukaryotic green alga Chromochloris zofingiensis is a reference organism for studying carbon partitioning and a promising candidate for the production of biofuel precursors. Recent transcriptome profiling transformed our understanding of its biology and generally algal biology, but epigenetic regulation remains understudied and represents a fundamental gap in our understanding of algal gene expression. Chromatin immunoprecipitation followed by deep sequencing (ChIP‐Seq) is a powerful tool for the discovery of such mechanisms, by identifying genome‐wide histone modification patterns and transcription factor‐binding sites alike. Here, we established a ChIP‐Seq framework for Chr. zofingiensis yielding over 20 million high‐quality reads per sample. The most critical steps in a ChIP experiment were optimized, including DNA shearing to obtain an average DNA fragment size of 250 bp and assessment of the recommended formaldehyde concentration for optimal DNA–protein cross‐linking. We used this ChIP‐Seq framework to generate a genome‐wide map of the H3K4me3 distribution pattern and to integrate these data with matching RNA‐Seq data. In line with observations from other organisms, H3K4me3 marks predominantly transcription start sites of genes. Our H3K4me3 ChIP‐Seq data will pave the way for improved genome structural annotation in the emerging reference alga Chr. zofingiensis. |
format | Online Article Text |
id | pubmed-8961045 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-89610452022-04-04 An optimized ChIP‐Seq framework for profiling histone modifications in Chromochloris zofingiensis Strenkert, Daniela Mingay, Matthew Schmollinger, Stefan Chen, Cindy O'Malley, Ronan C. Merchant, Sabeeha S. Plant Direct Original Research The eukaryotic green alga Chromochloris zofingiensis is a reference organism for studying carbon partitioning and a promising candidate for the production of biofuel precursors. Recent transcriptome profiling transformed our understanding of its biology and generally algal biology, but epigenetic regulation remains understudied and represents a fundamental gap in our understanding of algal gene expression. Chromatin immunoprecipitation followed by deep sequencing (ChIP‐Seq) is a powerful tool for the discovery of such mechanisms, by identifying genome‐wide histone modification patterns and transcription factor‐binding sites alike. Here, we established a ChIP‐Seq framework for Chr. zofingiensis yielding over 20 million high‐quality reads per sample. The most critical steps in a ChIP experiment were optimized, including DNA shearing to obtain an average DNA fragment size of 250 bp and assessment of the recommended formaldehyde concentration for optimal DNA–protein cross‐linking. We used this ChIP‐Seq framework to generate a genome‐wide map of the H3K4me3 distribution pattern and to integrate these data with matching RNA‐Seq data. In line with observations from other organisms, H3K4me3 marks predominantly transcription start sites of genes. Our H3K4me3 ChIP‐Seq data will pave the way for improved genome structural annotation in the emerging reference alga Chr. zofingiensis. John Wiley and Sons Inc. 2022-03-28 /pmc/articles/PMC8961045/ /pubmed/35382117 http://dx.doi.org/10.1002/pld3.392 Text en © 2022 The Authors. Plant Direct published by American Society of Plant Biologists and the Society for Experimental Biology and John Wiley & Sons Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Original Research Strenkert, Daniela Mingay, Matthew Schmollinger, Stefan Chen, Cindy O'Malley, Ronan C. Merchant, Sabeeha S. An optimized ChIP‐Seq framework for profiling histone modifications in Chromochloris zofingiensis |
title | An optimized ChIP‐Seq framework for profiling histone modifications in Chromochloris zofingiensis
|
title_full | An optimized ChIP‐Seq framework for profiling histone modifications in Chromochloris zofingiensis
|
title_fullStr | An optimized ChIP‐Seq framework for profiling histone modifications in Chromochloris zofingiensis
|
title_full_unstemmed | An optimized ChIP‐Seq framework for profiling histone modifications in Chromochloris zofingiensis
|
title_short | An optimized ChIP‐Seq framework for profiling histone modifications in Chromochloris zofingiensis
|
title_sort | optimized chip‐seq framework for profiling histone modifications in chromochloris zofingiensis |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8961045/ https://www.ncbi.nlm.nih.gov/pubmed/35382117 http://dx.doi.org/10.1002/pld3.392 |
work_keys_str_mv | AT strenkertdaniela anoptimizedchipseqframeworkforprofilinghistonemodificationsinchromochloriszofingiensis AT mingaymatthew anoptimizedchipseqframeworkforprofilinghistonemodificationsinchromochloriszofingiensis AT schmollingerstefan anoptimizedchipseqframeworkforprofilinghistonemodificationsinchromochloriszofingiensis AT chencindy anoptimizedchipseqframeworkforprofilinghistonemodificationsinchromochloriszofingiensis AT omalleyronanc anoptimizedchipseqframeworkforprofilinghistonemodificationsinchromochloriszofingiensis AT merchantsabeehas anoptimizedchipseqframeworkforprofilinghistonemodificationsinchromochloriszofingiensis AT strenkertdaniela optimizedchipseqframeworkforprofilinghistonemodificationsinchromochloriszofingiensis AT mingaymatthew optimizedchipseqframeworkforprofilinghistonemodificationsinchromochloriszofingiensis AT schmollingerstefan optimizedchipseqframeworkforprofilinghistonemodificationsinchromochloriszofingiensis AT chencindy optimizedchipseqframeworkforprofilinghistonemodificationsinchromochloriszofingiensis AT omalleyronanc optimizedchipseqframeworkforprofilinghistonemodificationsinchromochloriszofingiensis AT merchantsabeehas optimizedchipseqframeworkforprofilinghistonemodificationsinchromochloriszofingiensis |