Cargando…
Modeling treatment effect modification in multidrug-resistant tuberculosis in an individual patientdata meta-analysis
Effect modification occurs while the effect of the treatment is not homogeneous across the different strata of patient characteristics. When the effect of treatment may vary from individual to individual, precision medicine can be improved by identifying patient covariates to estimate the size and d...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8961254/ https://www.ncbi.nlm.nih.gov/pubmed/34903098 http://dx.doi.org/10.1177/09622802211046383 |
_version_ | 1784677557749153792 |
---|---|
author | Liu, Yan Schnitzer, Mireille E Wang, Guanbo Kennedy, Edward Viiklepp, Piret Vargas, Mario H Sotgiu, Giovanni Menzies, Dick Benedetti, Andrea |
author_facet | Liu, Yan Schnitzer, Mireille E Wang, Guanbo Kennedy, Edward Viiklepp, Piret Vargas, Mario H Sotgiu, Giovanni Menzies, Dick Benedetti, Andrea |
author_sort | Liu, Yan |
collection | PubMed |
description | Effect modification occurs while the effect of the treatment is not homogeneous across the different strata of patient characteristics. When the effect of treatment may vary from individual to individual, precision medicine can be improved by identifying patient covariates to estimate the size and direction of the effect at the individual level. However, this task is statistically challenging and typically requires large amounts of data. Investigators may be interested in using the individual patient data from multiple studies to estimate these treatment effect models. Our data arise from a systematic review of observational studies contrasting different treatments for multidrug-resistant tuberculosis, where multiple antimicrobial agents are taken concurrently to cure the infection. We propose a marginal structural model for effect modification by different patient characteristics and co-medications in a meta-analysis of observational individual patient data. We develop, evaluate, and apply a targeted maximum likelihood estimator for the doubly robust estimation of the parameters of the proposed marginal structural model in this context. In particular, we allow for differential availability of treatments across studies, measured confounding within and across studies, and random effects by study. |
format | Online Article Text |
id | pubmed-8961254 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-89612542022-03-30 Modeling treatment effect modification in multidrug-resistant tuberculosis in an individual patientdata meta-analysis Liu, Yan Schnitzer, Mireille E Wang, Guanbo Kennedy, Edward Viiklepp, Piret Vargas, Mario H Sotgiu, Giovanni Menzies, Dick Benedetti, Andrea Stat Methods Med Res Original Research Articles Effect modification occurs while the effect of the treatment is not homogeneous across the different strata of patient characteristics. When the effect of treatment may vary from individual to individual, precision medicine can be improved by identifying patient covariates to estimate the size and direction of the effect at the individual level. However, this task is statistically challenging and typically requires large amounts of data. Investigators may be interested in using the individual patient data from multiple studies to estimate these treatment effect models. Our data arise from a systematic review of observational studies contrasting different treatments for multidrug-resistant tuberculosis, where multiple antimicrobial agents are taken concurrently to cure the infection. We propose a marginal structural model for effect modification by different patient characteristics and co-medications in a meta-analysis of observational individual patient data. We develop, evaluate, and apply a targeted maximum likelihood estimator for the doubly robust estimation of the parameters of the proposed marginal structural model in this context. In particular, we allow for differential availability of treatments across studies, measured confounding within and across studies, and random effects by study. SAGE Publications 2021-12-13 2022-04 /pmc/articles/PMC8961254/ /pubmed/34903098 http://dx.doi.org/10.1177/09622802211046383 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by-nc/4.0/This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
spellingShingle | Original Research Articles Liu, Yan Schnitzer, Mireille E Wang, Guanbo Kennedy, Edward Viiklepp, Piret Vargas, Mario H Sotgiu, Giovanni Menzies, Dick Benedetti, Andrea Modeling treatment effect modification in multidrug-resistant tuberculosis in an individual patientdata meta-analysis |
title | Modeling treatment effect modification in multidrug-resistant
tuberculosis in an individual patientdata meta-analysis |
title_full | Modeling treatment effect modification in multidrug-resistant
tuberculosis in an individual patientdata meta-analysis |
title_fullStr | Modeling treatment effect modification in multidrug-resistant
tuberculosis in an individual patientdata meta-analysis |
title_full_unstemmed | Modeling treatment effect modification in multidrug-resistant
tuberculosis in an individual patientdata meta-analysis |
title_short | Modeling treatment effect modification in multidrug-resistant
tuberculosis in an individual patientdata meta-analysis |
title_sort | modeling treatment effect modification in multidrug-resistant
tuberculosis in an individual patientdata meta-analysis |
topic | Original Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8961254/ https://www.ncbi.nlm.nih.gov/pubmed/34903098 http://dx.doi.org/10.1177/09622802211046383 |
work_keys_str_mv | AT liuyan modelingtreatmenteffectmodificationinmultidrugresistanttuberculosisinanindividualpatientdatametaanalysis AT schnitzermireillee modelingtreatmenteffectmodificationinmultidrugresistanttuberculosisinanindividualpatientdatametaanalysis AT wangguanbo modelingtreatmenteffectmodificationinmultidrugresistanttuberculosisinanindividualpatientdatametaanalysis AT kennedyedward modelingtreatmenteffectmodificationinmultidrugresistanttuberculosisinanindividualpatientdatametaanalysis AT viiklepppiret modelingtreatmenteffectmodificationinmultidrugresistanttuberculosisinanindividualpatientdatametaanalysis AT vargasmarioh modelingtreatmenteffectmodificationinmultidrugresistanttuberculosisinanindividualpatientdatametaanalysis AT sotgiugiovanni modelingtreatmenteffectmodificationinmultidrugresistanttuberculosisinanindividualpatientdatametaanalysis AT menziesdick modelingtreatmenteffectmodificationinmultidrugresistanttuberculosisinanindividualpatientdatametaanalysis AT benedettiandrea modelingtreatmenteffectmodificationinmultidrugresistanttuberculosisinanindividualpatientdatametaanalysis |