Cargando…

Modeling treatment effect modification in multidrug-resistant tuberculosis in an individual patientdata meta-analysis

Effect modification occurs while the effect of the treatment is not homogeneous across the different strata of patient characteristics. When the effect of treatment may vary from individual to individual, precision medicine can be improved by identifying patient covariates to estimate the size and d...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Yan, Schnitzer, Mireille E, Wang, Guanbo, Kennedy, Edward, Viiklepp, Piret, Vargas, Mario H, Sotgiu, Giovanni, Menzies, Dick, Benedetti, Andrea
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8961254/
https://www.ncbi.nlm.nih.gov/pubmed/34903098
http://dx.doi.org/10.1177/09622802211046383
_version_ 1784677557749153792
author Liu, Yan
Schnitzer, Mireille E
Wang, Guanbo
Kennedy, Edward
Viiklepp, Piret
Vargas, Mario H
Sotgiu, Giovanni
Menzies, Dick
Benedetti, Andrea
author_facet Liu, Yan
Schnitzer, Mireille E
Wang, Guanbo
Kennedy, Edward
Viiklepp, Piret
Vargas, Mario H
Sotgiu, Giovanni
Menzies, Dick
Benedetti, Andrea
author_sort Liu, Yan
collection PubMed
description Effect modification occurs while the effect of the treatment is not homogeneous across the different strata of patient characteristics. When the effect of treatment may vary from individual to individual, precision medicine can be improved by identifying patient covariates to estimate the size and direction of the effect at the individual level. However, this task is statistically challenging and typically requires large amounts of data. Investigators may be interested in using the individual patient data from multiple studies to estimate these treatment effect models. Our data arise from a systematic review of observational studies contrasting different treatments for multidrug-resistant tuberculosis, where multiple antimicrobial agents are taken concurrently to cure the infection. We propose a marginal structural model for effect modification by different patient characteristics and co-medications in a meta-analysis of observational individual patient data. We develop, evaluate, and apply a targeted maximum likelihood estimator for the doubly robust estimation of the parameters of the proposed marginal structural model in this context. In particular, we allow for differential availability of treatments across studies, measured confounding within and across studies, and random effects by study.
format Online
Article
Text
id pubmed-8961254
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher SAGE Publications
record_format MEDLINE/PubMed
spelling pubmed-89612542022-03-30 Modeling treatment effect modification in multidrug-resistant tuberculosis in an individual patientdata meta-analysis Liu, Yan Schnitzer, Mireille E Wang, Guanbo Kennedy, Edward Viiklepp, Piret Vargas, Mario H Sotgiu, Giovanni Menzies, Dick Benedetti, Andrea Stat Methods Med Res Original Research Articles Effect modification occurs while the effect of the treatment is not homogeneous across the different strata of patient characteristics. When the effect of treatment may vary from individual to individual, precision medicine can be improved by identifying patient covariates to estimate the size and direction of the effect at the individual level. However, this task is statistically challenging and typically requires large amounts of data. Investigators may be interested in using the individual patient data from multiple studies to estimate these treatment effect models. Our data arise from a systematic review of observational studies contrasting different treatments for multidrug-resistant tuberculosis, where multiple antimicrobial agents are taken concurrently to cure the infection. We propose a marginal structural model for effect modification by different patient characteristics and co-medications in a meta-analysis of observational individual patient data. We develop, evaluate, and apply a targeted maximum likelihood estimator for the doubly robust estimation of the parameters of the proposed marginal structural model in this context. In particular, we allow for differential availability of treatments across studies, measured confounding within and across studies, and random effects by study. SAGE Publications 2021-12-13 2022-04 /pmc/articles/PMC8961254/ /pubmed/34903098 http://dx.doi.org/10.1177/09622802211046383 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by-nc/4.0/This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
spellingShingle Original Research Articles
Liu, Yan
Schnitzer, Mireille E
Wang, Guanbo
Kennedy, Edward
Viiklepp, Piret
Vargas, Mario H
Sotgiu, Giovanni
Menzies, Dick
Benedetti, Andrea
Modeling treatment effect modification in multidrug-resistant tuberculosis in an individual patientdata meta-analysis
title Modeling treatment effect modification in multidrug-resistant tuberculosis in an individual patientdata meta-analysis
title_full Modeling treatment effect modification in multidrug-resistant tuberculosis in an individual patientdata meta-analysis
title_fullStr Modeling treatment effect modification in multidrug-resistant tuberculosis in an individual patientdata meta-analysis
title_full_unstemmed Modeling treatment effect modification in multidrug-resistant tuberculosis in an individual patientdata meta-analysis
title_short Modeling treatment effect modification in multidrug-resistant tuberculosis in an individual patientdata meta-analysis
title_sort modeling treatment effect modification in multidrug-resistant tuberculosis in an individual patientdata meta-analysis
topic Original Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8961254/
https://www.ncbi.nlm.nih.gov/pubmed/34903098
http://dx.doi.org/10.1177/09622802211046383
work_keys_str_mv AT liuyan modelingtreatmenteffectmodificationinmultidrugresistanttuberculosisinanindividualpatientdatametaanalysis
AT schnitzermireillee modelingtreatmenteffectmodificationinmultidrugresistanttuberculosisinanindividualpatientdatametaanalysis
AT wangguanbo modelingtreatmenteffectmodificationinmultidrugresistanttuberculosisinanindividualpatientdatametaanalysis
AT kennedyedward modelingtreatmenteffectmodificationinmultidrugresistanttuberculosisinanindividualpatientdatametaanalysis
AT viiklepppiret modelingtreatmenteffectmodificationinmultidrugresistanttuberculosisinanindividualpatientdatametaanalysis
AT vargasmarioh modelingtreatmenteffectmodificationinmultidrugresistanttuberculosisinanindividualpatientdatametaanalysis
AT sotgiugiovanni modelingtreatmenteffectmodificationinmultidrugresistanttuberculosisinanindividualpatientdatametaanalysis
AT menziesdick modelingtreatmenteffectmodificationinmultidrugresistanttuberculosisinanindividualpatientdatametaanalysis
AT benedettiandrea modelingtreatmenteffectmodificationinmultidrugresistanttuberculosisinanindividualpatientdatametaanalysis