Cargando…

Extracellular vesicles derived from neural EGFL-Like 1-modified mesenchymal stem cells improve acellular bone regeneration via the miR-25-5p-SMAD2 signaling axis

Stem cell based transplants effectively regenerate tissues; however, limitations such as immune rejection and teratoma formation prevent their application. Extracellular vesicles (EVs)-mediated acellular tissue regeneration is a promising alternative to stem cell based transplants. Although neural E...

Descripción completa

Detalles Bibliográficos
Autores principales: Lan, Yanhua, Xie, Huizhi, Jin, Qianrui, Zhao, Xiaomin, Shi, Yang, Zhou, Yanyan, Hu, Zihe, Ye, Yi, Huang, Xiaoyuan, Sun, Yingjia, Chen, Zhuo, Xie, Zhijian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: KeAi Publishing 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8961279/
https://www.ncbi.nlm.nih.gov/pubmed/35386450
http://dx.doi.org/10.1016/j.bioactmat.2022.01.019
_version_ 1784677562785464320
author Lan, Yanhua
Xie, Huizhi
Jin, Qianrui
Zhao, Xiaomin
Shi, Yang
Zhou, Yanyan
Hu, Zihe
Ye, Yi
Huang, Xiaoyuan
Sun, Yingjia
Chen, Zhuo
Xie, Zhijian
author_facet Lan, Yanhua
Xie, Huizhi
Jin, Qianrui
Zhao, Xiaomin
Shi, Yang
Zhou, Yanyan
Hu, Zihe
Ye, Yi
Huang, Xiaoyuan
Sun, Yingjia
Chen, Zhuo
Xie, Zhijian
author_sort Lan, Yanhua
collection PubMed
description Stem cell based transplants effectively regenerate tissues; however, limitations such as immune rejection and teratoma formation prevent their application. Extracellular vesicles (EVs)-mediated acellular tissue regeneration is a promising alternative to stem cell based transplants. Although neural EGFL-like 1 (Nell1) is known to contribute to the osteogenic differentiation of bone marrow stem cells (BMSCs), it remains unknown whether EVs are involved in this process. Here, we present that EVs derived from Nell1-modified BMSCs (Nell1/EVs) have a stronger ability to promote BMSC osteogenesis owing to miR-25–5p downregulation. MiR-25–5p inhibits osteogenesis by targeting Smad2 and suppressing the SMAD and extracellular signal-related kinase 1 and 2 (ERK1/2) pathway activation. In addition, we demonstrate that the 3D-Nell1/EV-hydrogel system is beneficial for bone regeneration in vivo, probably stemming from a slow, continuous release and high concentration of EVs in the bone defect area. Thus, our results have shown the potential of Nell1/EVs as a novel acellular bone regeneration strategy. Mechanistically, the identification of miR-25-5p-SMAD2 signaling axis expands the knowledge of Nell1/EVs induced osteogenesis.
format Online
Article
Text
id pubmed-8961279
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher KeAi Publishing
record_format MEDLINE/PubMed
spelling pubmed-89612792022-04-05 Extracellular vesicles derived from neural EGFL-Like 1-modified mesenchymal stem cells improve acellular bone regeneration via the miR-25-5p-SMAD2 signaling axis Lan, Yanhua Xie, Huizhi Jin, Qianrui Zhao, Xiaomin Shi, Yang Zhou, Yanyan Hu, Zihe Ye, Yi Huang, Xiaoyuan Sun, Yingjia Chen, Zhuo Xie, Zhijian Bioact Mater Article Stem cell based transplants effectively regenerate tissues; however, limitations such as immune rejection and teratoma formation prevent their application. Extracellular vesicles (EVs)-mediated acellular tissue regeneration is a promising alternative to stem cell based transplants. Although neural EGFL-like 1 (Nell1) is known to contribute to the osteogenic differentiation of bone marrow stem cells (BMSCs), it remains unknown whether EVs are involved in this process. Here, we present that EVs derived from Nell1-modified BMSCs (Nell1/EVs) have a stronger ability to promote BMSC osteogenesis owing to miR-25–5p downregulation. MiR-25–5p inhibits osteogenesis by targeting Smad2 and suppressing the SMAD and extracellular signal-related kinase 1 and 2 (ERK1/2) pathway activation. In addition, we demonstrate that the 3D-Nell1/EV-hydrogel system is beneficial for bone regeneration in vivo, probably stemming from a slow, continuous release and high concentration of EVs in the bone defect area. Thus, our results have shown the potential of Nell1/EVs as a novel acellular bone regeneration strategy. Mechanistically, the identification of miR-25-5p-SMAD2 signaling axis expands the knowledge of Nell1/EVs induced osteogenesis. KeAi Publishing 2022-01-19 /pmc/articles/PMC8961279/ /pubmed/35386450 http://dx.doi.org/10.1016/j.bioactmat.2022.01.019 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Lan, Yanhua
Xie, Huizhi
Jin, Qianrui
Zhao, Xiaomin
Shi, Yang
Zhou, Yanyan
Hu, Zihe
Ye, Yi
Huang, Xiaoyuan
Sun, Yingjia
Chen, Zhuo
Xie, Zhijian
Extracellular vesicles derived from neural EGFL-Like 1-modified mesenchymal stem cells improve acellular bone regeneration via the miR-25-5p-SMAD2 signaling axis
title Extracellular vesicles derived from neural EGFL-Like 1-modified mesenchymal stem cells improve acellular bone regeneration via the miR-25-5p-SMAD2 signaling axis
title_full Extracellular vesicles derived from neural EGFL-Like 1-modified mesenchymal stem cells improve acellular bone regeneration via the miR-25-5p-SMAD2 signaling axis
title_fullStr Extracellular vesicles derived from neural EGFL-Like 1-modified mesenchymal stem cells improve acellular bone regeneration via the miR-25-5p-SMAD2 signaling axis
title_full_unstemmed Extracellular vesicles derived from neural EGFL-Like 1-modified mesenchymal stem cells improve acellular bone regeneration via the miR-25-5p-SMAD2 signaling axis
title_short Extracellular vesicles derived from neural EGFL-Like 1-modified mesenchymal stem cells improve acellular bone regeneration via the miR-25-5p-SMAD2 signaling axis
title_sort extracellular vesicles derived from neural egfl-like 1-modified mesenchymal stem cells improve acellular bone regeneration via the mir-25-5p-smad2 signaling axis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8961279/
https://www.ncbi.nlm.nih.gov/pubmed/35386450
http://dx.doi.org/10.1016/j.bioactmat.2022.01.019
work_keys_str_mv AT lanyanhua extracellularvesiclesderivedfromneuralegfllike1modifiedmesenchymalstemcellsimproveacellularboneregenerationviathemir255psmad2signalingaxis
AT xiehuizhi extracellularvesiclesderivedfromneuralegfllike1modifiedmesenchymalstemcellsimproveacellularboneregenerationviathemir255psmad2signalingaxis
AT jinqianrui extracellularvesiclesderivedfromneuralegfllike1modifiedmesenchymalstemcellsimproveacellularboneregenerationviathemir255psmad2signalingaxis
AT zhaoxiaomin extracellularvesiclesderivedfromneuralegfllike1modifiedmesenchymalstemcellsimproveacellularboneregenerationviathemir255psmad2signalingaxis
AT shiyang extracellularvesiclesderivedfromneuralegfllike1modifiedmesenchymalstemcellsimproveacellularboneregenerationviathemir255psmad2signalingaxis
AT zhouyanyan extracellularvesiclesderivedfromneuralegfllike1modifiedmesenchymalstemcellsimproveacellularboneregenerationviathemir255psmad2signalingaxis
AT huzihe extracellularvesiclesderivedfromneuralegfllike1modifiedmesenchymalstemcellsimproveacellularboneregenerationviathemir255psmad2signalingaxis
AT yeyi extracellularvesiclesderivedfromneuralegfllike1modifiedmesenchymalstemcellsimproveacellularboneregenerationviathemir255psmad2signalingaxis
AT huangxiaoyuan extracellularvesiclesderivedfromneuralegfllike1modifiedmesenchymalstemcellsimproveacellularboneregenerationviathemir255psmad2signalingaxis
AT sunyingjia extracellularvesiclesderivedfromneuralegfllike1modifiedmesenchymalstemcellsimproveacellularboneregenerationviathemir255psmad2signalingaxis
AT chenzhuo extracellularvesiclesderivedfromneuralegfllike1modifiedmesenchymalstemcellsimproveacellularboneregenerationviathemir255psmad2signalingaxis
AT xiezhijian extracellularvesiclesderivedfromneuralegfllike1modifiedmesenchymalstemcellsimproveacellularboneregenerationviathemir255psmad2signalingaxis