Cargando…
Strategies to Address the Lack of Labeled Data for Supervised Machine Learning Training With Electronic Health Records: Case Study for the Extraction of Symptoms From Clinical Notes
BACKGROUND: Automated extraction of symptoms from clinical notes is a challenging task owing to the multidimensional nature of symptom description. The availability of labeled training data is extremely limited owing to the nature of the data containing protected health information. Natural language...
Autores principales: | Humbert-Droz, Marie, Mukherjee, Pritam, Gevaert, Olivier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8961340/ https://www.ncbi.nlm.nih.gov/pubmed/35285805 http://dx.doi.org/10.2196/32903 |
Ejemplares similares
-
SCOPE: predicting future diagnoses in office visits using electronic health records
por: Mukherjee, Pritam, et al.
Publicado: (2023) -
Structuring clinical text with AI: Old versus new natural language processing techniques evaluated on eight common cardiovascular diseases
por: Zhan, Xianghao, et al.
Publicado: (2021) -
Development and validation of MedDRA Tagger: a tool for extraction and structuring medical information from clinical notes
por: Humbert-Droz, Marie, et al.
Publicado: (2022) -
Exploring telediagnostic procedures in child neuropsychiatry: addressing ADHD diagnosis and autism symptoms through supervised machine learning
por: Grazioli, Silvia, et al.
Publicado: (2023) -
Extracting Diagnoses and Investigation Results from Unstructured Text in Electronic Health Records by Semi-Supervised Machine Learning
por: Wang, Zhuoran, et al.
Publicado: (2012)