Cargando…
miR-27b-3p Attenuates Muscle Atrophy by Targeting Cbl-b in Skeletal Muscles
As it is well known, muscle atrophy is a process in which protein degradation increases and protein synthesis decreases. This process is regulated by a variety of links. Among them, microRNAs play an essential role in this process, which has attracted widespread attention. In this paper, we find tha...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8961554/ https://www.ncbi.nlm.nih.gov/pubmed/35204692 http://dx.doi.org/10.3390/biom12020191 |
Sumario: | As it is well known, muscle atrophy is a process in which protein degradation increases and protein synthesis decreases. This process is regulated by a variety of links. Among them, microRNAs play an essential role in this process, which has attracted widespread attention. In this paper, we find that miR-27b-3p and Cbl-b genes are significantly differentially expressed in the induced atrophy model. The dual-luciferase experiment and Western blot analysis confirmed that miR-27b-3p could regulate the expression of Cbl-b. In C2C12-differentiated myotubes, the overexpression of the Cbl-b gene showed that Cbl-b could upregulate the expression of MuRF-1 and Atrogin-1, which are related marker genes of muscle atrophy, at both the mRNA and protein levels, indicating that the Cbl-b gene can specifically affect muscle atrophy. The knockdown of the Cbl-b gene after C2C12-differentiated myotubes induced atrophy treatment can downregulate the expression of muscle-atrophy-related genes, indicating that manual intervention to downregulate the expression of Cbl-b has a certain alleviating effect on muscle atrophy. These data suggest that miR-27b-3p can regulate the expression of the Cbl-b gene and then exert a particular influence on muscle atrophy through the Cbl-b gene. |
---|