Cargando…
Model Reduction Through Progressive Latent Space Pruning in Deep Active Inference
Although still not fully understood, sleep is known to play an important role in learning and in pruning synaptic connections. From the active inference perspective, this can be cast as learning parameters of a generative model and Bayesian model reduction, respectively. In this article, we show how...
Autores principales: | Wauthier, Samuel T., De Boom, Cedric, Çatal, Ozan, Verbelen, Tim, Dhoedt, Bart |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8961807/ https://www.ncbi.nlm.nih.gov/pubmed/35360827 http://dx.doi.org/10.3389/fnbot.2022.795846 |
Ejemplares similares
-
Learning Generative State Space Models for Active Inference
por: Çatal, Ozan, et al.
Publicado: (2020) -
Active Vision for Robot Manipulators Using the Free Energy Principle
por: Van de Maele, Toon, et al.
Publicado: (2021) -
The Free Energy Principle for Perception and Action: A Deep Learning Perspective
por: Mazzaglia, Pietro, et al.
Publicado: (2022) -
Embodied Object Representation Learning and Recognition
por: Van de Maele, Toon, et al.
Publicado: (2022) -
Generalized Simultaneous Localization and Mapping (G-SLAM) as unification framework for natural and artificial intelligences: towards reverse engineering the hippocampal/entorhinal system and principles of high-level cognition
por: Safron, Adam, et al.
Publicado: (2022)