Cargando…
In vitro and in silico parameters for precise cgMLST typing of Listeria monocytogenes
BACKGROUND: Whole genome sequencing analyzed by core genome multi-locus sequence typing (cgMLST) is widely used in surveillance of the pathogenic bacteria Listeria monocytogenes. Given the heterogeneity of available bioinformatics tools to define cgMLST alleles, our aim was to identify parameters in...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8961897/ https://www.ncbi.nlm.nih.gov/pubmed/35346021 http://dx.doi.org/10.1186/s12864-022-08437-4 |
_version_ | 1784677686419914752 |
---|---|
author | Palma, Federica Mangone, Iolanda Janowicz, Anna Moura, Alexandra Chiaverini, Alexandra Torresi, Marina Garofolo, Giuliano Criscuolo, Alexis Brisse, Sylvain Di Pasquale, Adriano Cammà, Cesare Radomski, Nicolas |
author_facet | Palma, Federica Mangone, Iolanda Janowicz, Anna Moura, Alexandra Chiaverini, Alexandra Torresi, Marina Garofolo, Giuliano Criscuolo, Alexis Brisse, Sylvain Di Pasquale, Adriano Cammà, Cesare Radomski, Nicolas |
author_sort | Palma, Federica |
collection | PubMed |
description | BACKGROUND: Whole genome sequencing analyzed by core genome multi-locus sequence typing (cgMLST) is widely used in surveillance of the pathogenic bacteria Listeria monocytogenes. Given the heterogeneity of available bioinformatics tools to define cgMLST alleles, our aim was to identify parameters influencing the precision of cgMLST profiles. METHODS: We used three L. monocytogenes reference genomes from different phylogenetic lineages and assessed the impact of in vitro (i.e. tested genomes, successive platings, replicates of DNA extraction and sequencing) and in silico parameters (i.e. targeted depth of coverage, depth of coverage, breadth of coverage, assembly metrics, cgMLST workflows, cgMLST completeness) on cgMLST precision made of 1748 core loci. Six cgMLST workflows were tested, comprising assembly-based (BIGSdb, INNUENDO, GENPAT, SeqSphere and BioNumerics) and assembly-free (i.e. kmer-based MentaLiST) allele callers. Principal component analyses and generalized linear models were used to identify the most impactful parameters on cgMLST precision. RESULTS: The isolate’s genetic background, cgMLST workflows, cgMLST completeness, as well as depth and breadth of coverage were the parameters that impacted most on cgMLST precision (i.e. identical alleles against reference circular genomes). All workflows performed well at ≥40X of depth of coverage, with high loci detection (> 99.54% for all, except for BioNumerics with 97.78%) and showed consistent cluster definitions using the reference cut-off of ≤7 allele differences. CONCLUSIONS: This highlights that bioinformatics workflows dedicated to cgMLST allele calling are largely robust when paired-end reads are of high quality and when the sequencing depth is ≥40X. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12864-022-08437-4. |
format | Online Article Text |
id | pubmed-8961897 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-89618972022-03-30 In vitro and in silico parameters for precise cgMLST typing of Listeria monocytogenes Palma, Federica Mangone, Iolanda Janowicz, Anna Moura, Alexandra Chiaverini, Alexandra Torresi, Marina Garofolo, Giuliano Criscuolo, Alexis Brisse, Sylvain Di Pasquale, Adriano Cammà, Cesare Radomski, Nicolas BMC Genomics Research BACKGROUND: Whole genome sequencing analyzed by core genome multi-locus sequence typing (cgMLST) is widely used in surveillance of the pathogenic bacteria Listeria monocytogenes. Given the heterogeneity of available bioinformatics tools to define cgMLST alleles, our aim was to identify parameters influencing the precision of cgMLST profiles. METHODS: We used three L. monocytogenes reference genomes from different phylogenetic lineages and assessed the impact of in vitro (i.e. tested genomes, successive platings, replicates of DNA extraction and sequencing) and in silico parameters (i.e. targeted depth of coverage, depth of coverage, breadth of coverage, assembly metrics, cgMLST workflows, cgMLST completeness) on cgMLST precision made of 1748 core loci. Six cgMLST workflows were tested, comprising assembly-based (BIGSdb, INNUENDO, GENPAT, SeqSphere and BioNumerics) and assembly-free (i.e. kmer-based MentaLiST) allele callers. Principal component analyses and generalized linear models were used to identify the most impactful parameters on cgMLST precision. RESULTS: The isolate’s genetic background, cgMLST workflows, cgMLST completeness, as well as depth and breadth of coverage were the parameters that impacted most on cgMLST precision (i.e. identical alleles against reference circular genomes). All workflows performed well at ≥40X of depth of coverage, with high loci detection (> 99.54% for all, except for BioNumerics with 97.78%) and showed consistent cluster definitions using the reference cut-off of ≤7 allele differences. CONCLUSIONS: This highlights that bioinformatics workflows dedicated to cgMLST allele calling are largely robust when paired-end reads are of high quality and when the sequencing depth is ≥40X. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12864-022-08437-4. BioMed Central 2022-03-26 /pmc/articles/PMC8961897/ /pubmed/35346021 http://dx.doi.org/10.1186/s12864-022-08437-4 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Palma, Federica Mangone, Iolanda Janowicz, Anna Moura, Alexandra Chiaverini, Alexandra Torresi, Marina Garofolo, Giuliano Criscuolo, Alexis Brisse, Sylvain Di Pasquale, Adriano Cammà, Cesare Radomski, Nicolas In vitro and in silico parameters for precise cgMLST typing of Listeria monocytogenes |
title | In vitro and in silico parameters for precise cgMLST typing of Listeria monocytogenes |
title_full | In vitro and in silico parameters for precise cgMLST typing of Listeria monocytogenes |
title_fullStr | In vitro and in silico parameters for precise cgMLST typing of Listeria monocytogenes |
title_full_unstemmed | In vitro and in silico parameters for precise cgMLST typing of Listeria monocytogenes |
title_short | In vitro and in silico parameters for precise cgMLST typing of Listeria monocytogenes |
title_sort | in vitro and in silico parameters for precise cgmlst typing of listeria monocytogenes |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8961897/ https://www.ncbi.nlm.nih.gov/pubmed/35346021 http://dx.doi.org/10.1186/s12864-022-08437-4 |
work_keys_str_mv | AT palmafederica invitroandinsilicoparametersforprecisecgmlsttypingoflisteriamonocytogenes AT mangoneiolanda invitroandinsilicoparametersforprecisecgmlsttypingoflisteriamonocytogenes AT janowiczanna invitroandinsilicoparametersforprecisecgmlsttypingoflisteriamonocytogenes AT mouraalexandra invitroandinsilicoparametersforprecisecgmlsttypingoflisteriamonocytogenes AT chiaverinialexandra invitroandinsilicoparametersforprecisecgmlsttypingoflisteriamonocytogenes AT torresimarina invitroandinsilicoparametersforprecisecgmlsttypingoflisteriamonocytogenes AT garofologiuliano invitroandinsilicoparametersforprecisecgmlsttypingoflisteriamonocytogenes AT criscuoloalexis invitroandinsilicoparametersforprecisecgmlsttypingoflisteriamonocytogenes AT brissesylvain invitroandinsilicoparametersforprecisecgmlsttypingoflisteriamonocytogenes AT dipasqualeadriano invitroandinsilicoparametersforprecisecgmlsttypingoflisteriamonocytogenes AT cammacesare invitroandinsilicoparametersforprecisecgmlsttypingoflisteriamonocytogenes AT radomskinicolas invitroandinsilicoparametersforprecisecgmlsttypingoflisteriamonocytogenes |