Cargando…

Statistical inference for a quasi birth–death model of RNA transcription

BACKGROUND: A birth–death process of which the births follow a hypoexponential distribution with L phases and are controlled by an on/off mechanism, is a population process which we call the on/off-seq-L process. It is a suitable model for the dynamics of a population of RNA molecules in a single li...

Descripción completa

Detalles Bibliográficos
Autores principales: de Gunst, Mathisca, Mandjes, Michel, Sollie, Birgit
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8961911/
https://www.ncbi.nlm.nih.gov/pubmed/35346020
http://dx.doi.org/10.1186/s12859-022-04638-6
Descripción
Sumario:BACKGROUND: A birth–death process of which the births follow a hypoexponential distribution with L phases and are controlled by an on/off mechanism, is a population process which we call the on/off-seq-L process. It is a suitable model for the dynamics of a population of RNA molecules in a single living cell. Motivated by this biological application, our aim is to develop a statistical method to estimate the model parameters of the on/off-seq-L process, based on observations of the population size at discrete time points, and to apply this method to real RNA data. METHODS: It is shown that the on/off-seq-L process can be seen as a quasi birth–death process, and an Erlangization technique can be used to approximate the corresponding likelihood function. An extensive simulation-based numerical study is carried out to investigate the performance of the resulting estimation method. RESULTS AND CONCLUSION: A statistical method is presented to find maximum likelihood estimates of the model parameters for the on/off-seq-L process. Numerical complications related to the likelihood maximization are identified and analyzed, and solutions are presented. The proposed estimation method is a highly accurate method to find the parameter estimates. Based on real RNA data, the on/off-seq-3 process emerges as the best model to describe RNA transcription.