Cargando…

CT-based severity assessment for COVID-19 using weakly supervised non-local CNN

Evaluating patient criticality is the foremost step in administering appropriate COVID-19 treatment protocols. Learning an Artificial Intelligence (AI) model from clinical data for automatic risk-stratification enables accelerated response to patients displaying critical indicators. Chest CT manifes...

Descripción completa

Detalles Bibliográficos
Autores principales: Karthik, R., Menaka, R., Hariharan, M., Won, Daehan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8962065/
https://www.ncbi.nlm.nih.gov/pubmed/35370523
http://dx.doi.org/10.1016/j.asoc.2022.108765
Descripción
Sumario:Evaluating patient criticality is the foremost step in administering appropriate COVID-19 treatment protocols. Learning an Artificial Intelligence (AI) model from clinical data for automatic risk-stratification enables accelerated response to patients displaying critical indicators. Chest CT manifestations including ground-glass opacities and consolidations are a reliable indicator for prognostic studies and show variability with patient condition. To this end, we propose a novel attention framework to estimate COVID-19 severity as a regression score from a weakly annotated CT scan dataset. It takes a non-locality approach that correlates features across different parts and spatial scales of the 3D scan. An explicit guidance mechanism from limited infection labeling drives attention refinement and feature modulation. The resulting encoded representation is further enriched through cross-channel attention. The attention model also infuses global contextual awareness into the deep voxel features by querying the base CT scan to mine relevant features. Consequently, it learns to effectively localize its focus region and chisel out the infection precisely. Experimental validation on the MosMed dataset shows that the proposed architecture has significant potential in augmenting existing methods as it achieved a 0.84 R-squared score and 0.133 mean absolute difference.