Cargando…
CT-based severity assessment for COVID-19 using weakly supervised non-local CNN
Evaluating patient criticality is the foremost step in administering appropriate COVID-19 treatment protocols. Learning an Artificial Intelligence (AI) model from clinical data for automatic risk-stratification enables accelerated response to patients displaying critical indicators. Chest CT manifes...
Autores principales: | Karthik, R., Menaka, R., Hariharan, M., Won, Daehan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8962065/ https://www.ncbi.nlm.nih.gov/pubmed/35370523 http://dx.doi.org/10.1016/j.asoc.2022.108765 |
Ejemplares similares
-
Contour-enhanced attention CNN for CT-based COVID-19 segmentation
por: Karthik, R., et al.
Publicado: (2022) -
Learning distinctive filters for COVID-19 detection from chest X-ray using shuffled residual CNN
por: Karthik, R., et al.
Publicado: (2021) -
Weakly supervised segmentation of COVID-19 infection with local lesion coherence on CT images
por: Sun, Wanchun, et al.
Publicado: (2023) -
CNN-ViT Supported Weakly-Supervised Video Segment Level Anomaly Detection
por: Sharif, Md. Haidar, et al.
Publicado: (2023) -
Weakly-Supervised Network for Detection of COVID-19 in Chest CT Scans
Publicado: (2020)