Cargando…
Role of Microbiota-Gut-Brain Axis in Regulating Dopaminergic Signaling
Dopamine is a neurotransmitter that plays a critical role both peripherally and centrally in vital functions such as cognition, reward, satiety, voluntary motor movements, pleasure, and motivation. Optimal dopamine bioavailability is essential for normal brain functioning and protection against the...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8962300/ https://www.ncbi.nlm.nih.gov/pubmed/35203645 http://dx.doi.org/10.3390/biomedicines10020436 |
_version_ | 1784677769219670016 |
---|---|
author | Hamamah, Sevag Aghazarian, Armin Nazaryan, Anthony Hajnal, Andras Covasa, Mihai |
author_facet | Hamamah, Sevag Aghazarian, Armin Nazaryan, Anthony Hajnal, Andras Covasa, Mihai |
author_sort | Hamamah, Sevag |
collection | PubMed |
description | Dopamine is a neurotransmitter that plays a critical role both peripherally and centrally in vital functions such as cognition, reward, satiety, voluntary motor movements, pleasure, and motivation. Optimal dopamine bioavailability is essential for normal brain functioning and protection against the development of neurological diseases. Emerging evidence shows that gut microbiota have significant roles in maintaining adequate concentrations of dopamine via intricate, bidirectional communication known as the microbiota-gut-brain axis. The vagus nerve, immune system, hypothalamus–pituitary–adrenal axis, and microbial metabolites serve as important mediators of the reciprocal microbiota-gut-brain signaling. Furthermore, gut microbiota contain intrinsic enzymatic activity that is highly involved in dopamine metabolism, facilitating dopamine synthesis as well as its metabolite breakdown. This review examines the relationship between key genera of gut microbiota such as Prevotella, Bacteroides, Lactobacillus, Bifidobacterium, Clostridium, Enterococcus, and Ruminococcus and their effects on dopamine. The effects of gut dysbiosis on dopamine bioavailability and the subsequent impact on dopamine-related pathological conditions such as Parkinson’s disease are also discussed. Understanding the role of gut microbiota in modulating dopamine activity and bioavailability both in the periphery and in the central nervous system can help identify new therapeutic targets as well as optimize available methods to prevent, delay, or restore dopaminergic deficits in neurologic and metabolic disorders. |
format | Online Article Text |
id | pubmed-8962300 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89623002022-03-30 Role of Microbiota-Gut-Brain Axis in Regulating Dopaminergic Signaling Hamamah, Sevag Aghazarian, Armin Nazaryan, Anthony Hajnal, Andras Covasa, Mihai Biomedicines Review Dopamine is a neurotransmitter that plays a critical role both peripherally and centrally in vital functions such as cognition, reward, satiety, voluntary motor movements, pleasure, and motivation. Optimal dopamine bioavailability is essential for normal brain functioning and protection against the development of neurological diseases. Emerging evidence shows that gut microbiota have significant roles in maintaining adequate concentrations of dopamine via intricate, bidirectional communication known as the microbiota-gut-brain axis. The vagus nerve, immune system, hypothalamus–pituitary–adrenal axis, and microbial metabolites serve as important mediators of the reciprocal microbiota-gut-brain signaling. Furthermore, gut microbiota contain intrinsic enzymatic activity that is highly involved in dopamine metabolism, facilitating dopamine synthesis as well as its metabolite breakdown. This review examines the relationship between key genera of gut microbiota such as Prevotella, Bacteroides, Lactobacillus, Bifidobacterium, Clostridium, Enterococcus, and Ruminococcus and their effects on dopamine. The effects of gut dysbiosis on dopamine bioavailability and the subsequent impact on dopamine-related pathological conditions such as Parkinson’s disease are also discussed. Understanding the role of gut microbiota in modulating dopamine activity and bioavailability both in the periphery and in the central nervous system can help identify new therapeutic targets as well as optimize available methods to prevent, delay, or restore dopaminergic deficits in neurologic and metabolic disorders. MDPI 2022-02-13 /pmc/articles/PMC8962300/ /pubmed/35203645 http://dx.doi.org/10.3390/biomedicines10020436 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Hamamah, Sevag Aghazarian, Armin Nazaryan, Anthony Hajnal, Andras Covasa, Mihai Role of Microbiota-Gut-Brain Axis in Regulating Dopaminergic Signaling |
title | Role of Microbiota-Gut-Brain Axis in Regulating Dopaminergic Signaling |
title_full | Role of Microbiota-Gut-Brain Axis in Regulating Dopaminergic Signaling |
title_fullStr | Role of Microbiota-Gut-Brain Axis in Regulating Dopaminergic Signaling |
title_full_unstemmed | Role of Microbiota-Gut-Brain Axis in Regulating Dopaminergic Signaling |
title_short | Role of Microbiota-Gut-Brain Axis in Regulating Dopaminergic Signaling |
title_sort | role of microbiota-gut-brain axis in regulating dopaminergic signaling |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8962300/ https://www.ncbi.nlm.nih.gov/pubmed/35203645 http://dx.doi.org/10.3390/biomedicines10020436 |
work_keys_str_mv | AT hamamahsevag roleofmicrobiotagutbrainaxisinregulatingdopaminergicsignaling AT aghazarianarmin roleofmicrobiotagutbrainaxisinregulatingdopaminergicsignaling AT nazaryananthony roleofmicrobiotagutbrainaxisinregulatingdopaminergicsignaling AT hajnalandras roleofmicrobiotagutbrainaxisinregulatingdopaminergicsignaling AT covasamihai roleofmicrobiotagutbrainaxisinregulatingdopaminergicsignaling |