Cargando…
Visualization of medical concepts represented using word embeddings: a scoping review
BACKGROUND: Analyzing the unstructured textual data contained in electronic health records (EHRs) has always been a challenging task. Word embedding methods have become an essential foundation for neural network-based approaches in natural language processing (NLP), to learn dense and low-dimensiona...
Autores principales: | Oubenali, Naima, Messaoud, Sabrina, Filiot, Alexandre, Lamer, Antoine, Andrey, Paul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8962592/ https://www.ncbi.nlm.nih.gov/pubmed/35351120 http://dx.doi.org/10.1186/s12911-022-01822-9 |
Ejemplares similares
-
On the Learnability of Concepts: With Applications to Comparing Word Embedding Algorithms
por: Sutton, Adam, et al.
Publicado: (2020) -
Quality of word and concept embeddings in targetted biomedical domains
por: Giancani, Salvatore, et al.
Publicado: (2023) -
On Computability of Data Word Functions Defined by Transducers
por: Exibard, Léo, et al.
Publicado: (2020) -
Representing Multiword Chemical Terms through Phrase-Level Preprocessing
and Word Embedding
por: Huang, Liyuan, et al.
Publicado: (2019) -
EHR phenotyping via jointly embedding medical concepts and words into a unified vector space
por: Bai, Tian, et al.
Publicado: (2018)