Cargando…
Pocket2Drug: An Encoder-Decoder Deep Neural Network for the Target-Based Drug Design
Computational modeling is an essential component of modern drug discovery. One of its most important applications is to select promising drug candidates for pharmacologically relevant target proteins. Because of continuing advances in structural biology, putative binding sites for small organic mole...
Autores principales: | Shi, Wentao, Singha, Manali, Srivastava, Gopal, Pu, Limeng, Ramanujam, J., Brylinski, Michal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8962739/ https://www.ncbi.nlm.nih.gov/pubmed/35359869 http://dx.doi.org/10.3389/fphar.2022.837715 |
Ejemplares similares
-
GraphSite: Ligand Binding Site Classification with Deep Graph Learning
por: Shi, Wentao, et al.
Publicado: (2022) -
CancerOmicsNet: a multi-omics network-based approach to anti-cancer drug profiling
por: Pu, Limeng, et al.
Publicado: (2022) -
GraphDTI: A robust deep learning predictor of drug-target interactions from multiple heterogeneous data
por: Liu, Guannan, et al.
Publicado: (2021) -
DeepDrug3D: Classification of ligand-binding pockets in proteins with a convolutional neural network
por: Pu, Limeng, et al.
Publicado: (2019) -
Unlocking the Potential of Kinase Targets in Cancer: Insights from CancerOmicsNet, an AI-Driven Approach to Drug Response Prediction in Cancer
por: Singha, Manali, et al.
Publicado: (2023)