Cargando…
Multi-Agent Reinforcement Learning via Adaptive Kalman Temporal Difference and Successor Representation
Development of distributed Multi-Agent Reinforcement Learning (MARL) algorithms has attracted an increasing surge of interest lately. Generally speaking, conventional Model-Based (MB) or Model-Free (MF) RL algorithms are not directly applicable to the MARL problems due to utilization of a fixed rewa...
Autores principales: | Salimibeni, Mohammad, Mohammadi, Arash, Malekzadeh, Parvin, Plataniotis, Konstantinos N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8962978/ https://www.ncbi.nlm.nih.gov/pubmed/35214293 http://dx.doi.org/10.3390/s22041393 |
Ejemplares similares
-
Neural learning rules for generating flexible predictions and computing the successor representation
por: Fang, Ching, et al.
Publicado: (2023) -
Rigid reduced successor representation as a potential mechanism for addiction
por: Shimomura, Kanji, et al.
Publicado: (2021) -
Neural network based successor representations to form cognitive maps of space and language
por: Stoewer, Paul, et al.
Publicado: (2022) -
Copernicus and his successors
por: Rosen, Edward, et al.
Publicado: (2010) -
Internets successor launched
Publicado: (2003)