Cargando…

A High Precision and Multifunctional Electro-Optical Conversion Efficiency Measurement System for Metamaterial-Based Thermal Emitters

In this study, a multifunctional high-vacuum system was established to measure the electro-optical conversion efficiency of metamaterial-based thermal emitters with built-in heaters. The system is composed of an environmental control module, an electro-optical conversion measurement module, and a sy...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Heng, Zhao, Meng, Gong, Yongkang, Li, Kang, Wang, Cong, Wei, Yuchen, Wang, Jun, Liu, Guozhen, Yao, Jinlei, Li, Ying, Li, Zheyi, Gao, Zhiqiang, Gao, Ju
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8963016/
https://www.ncbi.nlm.nih.gov/pubmed/35214215
http://dx.doi.org/10.3390/s22041313
_version_ 1784677901345488896
author Liu, Heng
Zhao, Meng
Gong, Yongkang
Li, Kang
Wang, Cong
Wei, Yuchen
Wang, Jun
Liu, Guozhen
Yao, Jinlei
Li, Ying
Li, Zheyi
Gao, Zhiqiang
Gao, Ju
author_facet Liu, Heng
Zhao, Meng
Gong, Yongkang
Li, Kang
Wang, Cong
Wei, Yuchen
Wang, Jun
Liu, Guozhen
Yao, Jinlei
Li, Ying
Li, Zheyi
Gao, Zhiqiang
Gao, Ju
author_sort Liu, Heng
collection PubMed
description In this study, a multifunctional high-vacuum system was established to measure the electro-optical conversion efficiency of metamaterial-based thermal emitters with built-in heaters. The system is composed of an environmental control module, an electro-optical conversion measurement module, and a system control module. The system can provide air, argon, high vacuum, and other conventional testing environments, combined with humidity control. The test chamber and sample holder are carefully designed to minimize heat transfer through thermal conduction and convection. The optical power measurements are realized using the combination of a water-cooled KBr flange, an integrating sphere, and thermopile detectors. This structure is very stable and can detect light emission at the μW level. The system can synchronously detect the heating voltage, heating current, optical power, sample temperatures (both top and bottom), ambient pressure, humidity, and other environmental parameters. The comprehensive parameter detection capability enables the system to monitor subtle sample changes and perform failure mechanism analysis with the aid of offline material analysis using scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. Furthermore, the system can be used for fatigue and high-low temperature impact tests.
format Online
Article
Text
id pubmed-8963016
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-89630162022-03-30 A High Precision and Multifunctional Electro-Optical Conversion Efficiency Measurement System for Metamaterial-Based Thermal Emitters Liu, Heng Zhao, Meng Gong, Yongkang Li, Kang Wang, Cong Wei, Yuchen Wang, Jun Liu, Guozhen Yao, Jinlei Li, Ying Li, Zheyi Gao, Zhiqiang Gao, Ju Sensors (Basel) Article In this study, a multifunctional high-vacuum system was established to measure the electro-optical conversion efficiency of metamaterial-based thermal emitters with built-in heaters. The system is composed of an environmental control module, an electro-optical conversion measurement module, and a system control module. The system can provide air, argon, high vacuum, and other conventional testing environments, combined with humidity control. The test chamber and sample holder are carefully designed to minimize heat transfer through thermal conduction and convection. The optical power measurements are realized using the combination of a water-cooled KBr flange, an integrating sphere, and thermopile detectors. This structure is very stable and can detect light emission at the μW level. The system can synchronously detect the heating voltage, heating current, optical power, sample temperatures (both top and bottom), ambient pressure, humidity, and other environmental parameters. The comprehensive parameter detection capability enables the system to monitor subtle sample changes and perform failure mechanism analysis with the aid of offline material analysis using scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. Furthermore, the system can be used for fatigue and high-low temperature impact tests. MDPI 2022-02-09 /pmc/articles/PMC8963016/ /pubmed/35214215 http://dx.doi.org/10.3390/s22041313 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Liu, Heng
Zhao, Meng
Gong, Yongkang
Li, Kang
Wang, Cong
Wei, Yuchen
Wang, Jun
Liu, Guozhen
Yao, Jinlei
Li, Ying
Li, Zheyi
Gao, Zhiqiang
Gao, Ju
A High Precision and Multifunctional Electro-Optical Conversion Efficiency Measurement System for Metamaterial-Based Thermal Emitters
title A High Precision and Multifunctional Electro-Optical Conversion Efficiency Measurement System for Metamaterial-Based Thermal Emitters
title_full A High Precision and Multifunctional Electro-Optical Conversion Efficiency Measurement System for Metamaterial-Based Thermal Emitters
title_fullStr A High Precision and Multifunctional Electro-Optical Conversion Efficiency Measurement System for Metamaterial-Based Thermal Emitters
title_full_unstemmed A High Precision and Multifunctional Electro-Optical Conversion Efficiency Measurement System for Metamaterial-Based Thermal Emitters
title_short A High Precision and Multifunctional Electro-Optical Conversion Efficiency Measurement System for Metamaterial-Based Thermal Emitters
title_sort high precision and multifunctional electro-optical conversion efficiency measurement system for metamaterial-based thermal emitters
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8963016/
https://www.ncbi.nlm.nih.gov/pubmed/35214215
http://dx.doi.org/10.3390/s22041313
work_keys_str_mv AT liuheng ahighprecisionandmultifunctionalelectroopticalconversionefficiencymeasurementsystemformetamaterialbasedthermalemitters
AT zhaomeng ahighprecisionandmultifunctionalelectroopticalconversionefficiencymeasurementsystemformetamaterialbasedthermalemitters
AT gongyongkang ahighprecisionandmultifunctionalelectroopticalconversionefficiencymeasurementsystemformetamaterialbasedthermalemitters
AT likang ahighprecisionandmultifunctionalelectroopticalconversionefficiencymeasurementsystemformetamaterialbasedthermalemitters
AT wangcong ahighprecisionandmultifunctionalelectroopticalconversionefficiencymeasurementsystemformetamaterialbasedthermalemitters
AT weiyuchen ahighprecisionandmultifunctionalelectroopticalconversionefficiencymeasurementsystemformetamaterialbasedthermalemitters
AT wangjun ahighprecisionandmultifunctionalelectroopticalconversionefficiencymeasurementsystemformetamaterialbasedthermalemitters
AT liuguozhen ahighprecisionandmultifunctionalelectroopticalconversionefficiencymeasurementsystemformetamaterialbasedthermalemitters
AT yaojinlei ahighprecisionandmultifunctionalelectroopticalconversionefficiencymeasurementsystemformetamaterialbasedthermalemitters
AT liying ahighprecisionandmultifunctionalelectroopticalconversionefficiencymeasurementsystemformetamaterialbasedthermalemitters
AT lizheyi ahighprecisionandmultifunctionalelectroopticalconversionefficiencymeasurementsystemformetamaterialbasedthermalemitters
AT gaozhiqiang ahighprecisionandmultifunctionalelectroopticalconversionefficiencymeasurementsystemformetamaterialbasedthermalemitters
AT gaoju ahighprecisionandmultifunctionalelectroopticalconversionefficiencymeasurementsystemformetamaterialbasedthermalemitters
AT liuheng highprecisionandmultifunctionalelectroopticalconversionefficiencymeasurementsystemformetamaterialbasedthermalemitters
AT zhaomeng highprecisionandmultifunctionalelectroopticalconversionefficiencymeasurementsystemformetamaterialbasedthermalemitters
AT gongyongkang highprecisionandmultifunctionalelectroopticalconversionefficiencymeasurementsystemformetamaterialbasedthermalemitters
AT likang highprecisionandmultifunctionalelectroopticalconversionefficiencymeasurementsystemformetamaterialbasedthermalemitters
AT wangcong highprecisionandmultifunctionalelectroopticalconversionefficiencymeasurementsystemformetamaterialbasedthermalemitters
AT weiyuchen highprecisionandmultifunctionalelectroopticalconversionefficiencymeasurementsystemformetamaterialbasedthermalemitters
AT wangjun highprecisionandmultifunctionalelectroopticalconversionefficiencymeasurementsystemformetamaterialbasedthermalemitters
AT liuguozhen highprecisionandmultifunctionalelectroopticalconversionefficiencymeasurementsystemformetamaterialbasedthermalemitters
AT yaojinlei highprecisionandmultifunctionalelectroopticalconversionefficiencymeasurementsystemformetamaterialbasedthermalemitters
AT liying highprecisionandmultifunctionalelectroopticalconversionefficiencymeasurementsystemformetamaterialbasedthermalemitters
AT lizheyi highprecisionandmultifunctionalelectroopticalconversionefficiencymeasurementsystemformetamaterialbasedthermalemitters
AT gaozhiqiang highprecisionandmultifunctionalelectroopticalconversionefficiencymeasurementsystemformetamaterialbasedthermalemitters
AT gaoju highprecisionandmultifunctionalelectroopticalconversionefficiencymeasurementsystemformetamaterialbasedthermalemitters