Cargando…
Comparing Sampling Strategies for Tackling Imbalanced Data in Human Activity Recognition
Human activity recognition (HAR) using wearable sensors is an increasingly active research topic in machine learning, aided in part by the ready availability of detailed motion capture data from smartphones, fitness trackers, and smartwatches. The goal of HAR is to use such devices to assist users i...
Autores principales: | Alharbi, Fayez, Ouarbya, Lahcen, Ward, Jamie A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8963022/ https://www.ncbi.nlm.nih.gov/pubmed/35214275 http://dx.doi.org/10.3390/s22041373 |
Ejemplares similares
-
Tackling imbalanced data in cybersecurity with transfer learning: a case with ROP payload detection
por: Wang, Haizhou, et al.
Publicado: (2023) -
An empirical evaluation of sampling methods for the classification of imbalanced data
por: Kim, Misuk, et al.
Publicado: (2022) -
Cost-sensitive learning strategies for high-dimensional and imbalanced data: a comparative study
por: Pes, Barbara, et al.
Publicado: (2021) -
Cross-Modality Interaction Network for Equine Activity Recognition Using Imbalanced Multi-Modal Data †
por: Mao, Axiu, et al.
Publicado: (2021) -
A Novel Sample Selection Strategy for Imbalanced Data of Biomedical Event Extraction with Joint Scoring Mechanism
por: Lu, Yang, et al.
Publicado: (2016)