Cargando…
Thermal Conductivity Gas Sensor with Enhanced Flow-Rate Independence
In this article, novel thermal gas sensors with newly designed diffusion gas channels are proposed to reduce the flow-rate disturbance. Simulation studies suggest that by lowering the gas flow velocity near the hot film, the maximum normalized temperature changes caused by flow-rate variations in th...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8963026/ https://www.ncbi.nlm.nih.gov/pubmed/35214206 http://dx.doi.org/10.3390/s22041308 |
Sumario: | In this article, novel thermal gas sensors with newly designed diffusion gas channels are proposed to reduce the flow-rate disturbance. Simulation studies suggest that by lowering the gas flow velocity near the hot film, the maximum normalized temperature changes caused by flow-rate variations in the two new designs (Type-H and Type-U) are decreased to only 1.22% and 0.02%, which is much smaller than in the traditional straight design (Type-I) of 20.16%. Experiment results are in agreement with the simulations that the maximum normalized flow-rate interferences in Type-H and Type-U are only 1.51% and 1.65%, compared to 24.91% in Type-I. As the introduced CO(2) flow varied from 1 to 20 sccm, the normalized output deviations in Type-H and Type-U are 0.38% and 0.02%, respectively, which are 2 and 3 orders of magnitude lower than in Type-I of 10.20%. In addition, the recovery time is almost the same in all these sensors. These results indicate that the principle of decreasing the flow velocity near the hot film caused by the two novel diffusion designs can enhance the flow-rate independence and improve the accuracy of the thermal conductivity as well as the gas detection. |
---|