Cargando…
Comparative Study of Machine-Learning Frameworks for the Elaboration of Feed-Forward Neural Networks by Varying the Complexity of Impedimetric Datasets Synthesized Using Eddy Current Sensors for the Characterization of Bi-Metallic Coins
A suitable framework for the development of artificial neural networks is important because it decides the level of accuracy, which can be reached for a certain dataset and increases the certainty about the reached classification results. In this paper, we conduct a comparative study for the perform...
Autores principales: | Munjal, Rohan, Arif, Sohaib, Wendler, Frank, Kanoun, Olfa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8963033/ https://www.ncbi.nlm.nih.gov/pubmed/35214213 http://dx.doi.org/10.3390/s22041312 |
Ejemplares similares
-
Eddy Current Sensor System for Tilting Independent In-Process Measurement of Magnetic Anisotropy
por: Wendler, Frank, et al.
Publicado: (2021) -
Discrete-time quantum walk with feed-forward quantum coin
por: Shikano, Yutaka, et al.
Publicado: (2014) -
The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data
por: Pastorello, Gilberto, et al.
Publicado: (2020) -
Towards Embedded Electrochemical Sensors for On-Site Nitrite Detection by Gold Nanoparticles Modified Screen Printed Carbon Electrodes
por: Adiraju, Anurag, et al.
Publicado: (2023) -
Electrochemical impedimetric biosensors for food safety
por: Chai, Changhoon, et al.
Publicado: (2020)