Cargando…

Effectiveness and Productivity Improvement of Conventional Pultrusion Processes

Pultrusion is a technological process in which fibers impregnated with resin move through the heated die and solidify into a composite profile with a constant cross section, as in the metallic die. The effectiveness and productivity of conventional pultrusion processes, preserving the quality of pul...

Descripción completa

Detalles Bibliográficos
Autores principales: Barkanov, Evgeny, Akishin, Pavel, Namsone-Sile, Endija
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8963061/
https://www.ncbi.nlm.nih.gov/pubmed/35215753
http://dx.doi.org/10.3390/polym14040841
Descripción
Sumario:Pultrusion is a technological process in which fibers impregnated with resin move through the heated die and solidify into a composite profile with a constant cross section, as in the metallic die. The effectiveness and productivity of conventional pultrusion processes, preserving the quality of pultruded profiles, could be improved by process optimization or by the application of new, effective heating sources instead of electrical resistances with high heat losses. Due to the large dimension of the numerical problem and multiple iterations applied for the solution of government equations, an optimization methodology was developed, using the method of experimental design and the response surface technique. To develop microwave-assisted pultrusion processes, as well as pultrusion tooling design and process control, new effective electromagnetic-thermo-chemical finite element models and algorithms were developed by using general-purpose finite element software that results in considerable savings in development time and costs and makes available various modeling features of the finite element packages. The effectiveness and productivity of the optimized conventional pultrusion processes and the developed microwave-assisted pultrusion processes are estimated in comparison with the real pultrusion processes used in laboratory and industrial shops.