Cargando…

Evaluation of a New Lightweight UAV-Borne Topo-Bathymetric LiDAR for Shallow Water Bathymetry and Object Detection

Airborne LiDAR bathymetry (ALB) has proven to be an effective technology for shallow water mapping. To collect data with a high point density, a lightweight dual-wavelength LiDAR system mounted on unmanned aerial vehicles (UAVs) was developed. This study presents and evaluates the system using the f...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Dandi, Xing, Shuai, He, Yan, Yu, Jiayong, Xu, Qing, Li, Pengcheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8963068/
https://www.ncbi.nlm.nih.gov/pubmed/35214279
http://dx.doi.org/10.3390/s22041379
Descripción
Sumario:Airborne LiDAR bathymetry (ALB) has proven to be an effective technology for shallow water mapping. To collect data with a high point density, a lightweight dual-wavelength LiDAR system mounted on unmanned aerial vehicles (UAVs) was developed. This study presents and evaluates the system using the field data acquired from a flight test in Dazhou Island, China. In the precision and accuracy assessment, the local fitted planes extracted from the water surface points and the multibeam echosounder data are used as a reference for water surface and bottom measurements, respectively. For the bathymetric performance comparison, the study area is also measured with an ALB system installed on the manned aerial platform. The object detection capability of the system is examined with placed small cubes. Results show that the fitting precision of the water surface is 0.1227 m, and the absolute accuracy of the water bottom is 0.1268 m, both of which reach a decimeter level. Compared to the manned ALB system, the UAV-borne system provides higher resolution data with an average point density of 42 points/m(2) and maximum detectable depth of 1.7–1.9 Secchi depths. In the point cloud of the water bottom, the existence of a 1-m target cube and the rough shape of a 2-m target cube are clearly observed at a depth of 12 m. The system shows great potential for flexible shallow water mapping and underwater object detection with promising results.