Cargando…
American Sign Language Words Recognition of Skeletal Videos Using Processed Video Driven Multi-Stacked Deep LSTM
Complex hand gesture interactions among dynamic sign words may lead to misclassification, which affects the recognition accuracy of the ubiquitous sign language recognition system. This paper proposes to augment the feature vector of dynamic sign words with knowledge of hand dynamics as a proxy and...
Autores principales: | Abdullahi, Sunusi Bala, Chamnongthai, Kosin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8963088/ https://www.ncbi.nlm.nih.gov/pubmed/35214309 http://dx.doi.org/10.3390/s22041406 |
Ejemplares similares
-
Backhand-Approach-Based American Sign Language Words Recognition Using Spatial-Temporal Body Parts and Hand Relationship Patterns
por: Chophuk, Ponlawat, et al.
Publicado: (2022) -
ERP Evidence for Co-Activation of English Words during Recognition of American Sign Language Signs
por: Lee, Brittany, et al.
Publicado: (2019) -
Facial expression recognition in videos using hybrid CNN & ConvLSTM
por: Singh, Rajesh, et al.
Publicado: (2023) -
Deepfake tweets classification using stacked Bi-LSTM and words embedding
por: Rupapara, Vaibhav, et al.
Publicado: (2021) -
Hand gestures for emergency situations: A video dataset based on words from Indian sign language
por: Adithya, V., et al.
Publicado: (2020)