Cargando…
Artificial Neural Network Detects Hip Muscle Forces as Determinant for Harmonic Walking in People after Stroke
Many recent studies have highlighted that the harmony of physiological walking is based on a specific proportion between the durations of the phases of the gait cycle. When this proportion is close to the so-called golden ratio (about 1.618), the gait cycle assumes an autosimilar fractal structure....
Autores principales: | Iosa, Marco, Benedetti, Maria Grazia, Antonucci, Gabriella, Paolucci, Stefano, Morone, Giovanni |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8963097/ https://www.ncbi.nlm.nih.gov/pubmed/35214276 http://dx.doi.org/10.3390/s22041374 |
Ejemplares similares
-
Application of an Artificial Neural Network to Identify the Factors Influencing Neurorehabilitation Outcomes of Patients with Ischemic Stroke Treated with Thrombolysis
por: Iosa, Marco, et al.
Publicado: (2023) -
Prognostic Factors in Neurorehabilitation of Stroke: A Comparison among Regression, Neural Network, and Cluster Analyses
por: Iosa, Marco, et al.
Publicado: (2021) -
Artificial Neural Network Analyzing Wearable Device Gait Data for Identifying Patients With Stroke Unable to Return to Work
por: Iosa, Marco, et al.
Publicado: (2021) -
Golden Gait: An Optimization Theory Perspective on Human and Humanoid Walking
por: Iosa, Marco, et al.
Publicado: (2017) -
Sensorized Assessment of Dynamic Locomotor Imagery in People with Stroke and Healthy Subjects
por: De Bartolo, Daniela, et al.
Publicado: (2020)