Cargando…

Optimal Energy Scheduling Based on Jaya Algorithm for Integration of Vehicle-to-Home and Energy Storage System with Photovoltaic Generation in Smart Home

With the emerging of the smart grid, it has become easier for consumers to control their consumption. The efficient use of the integration of renewable energy sources with electric vehicle (EV) and energy storage systems (ESSs) in the smart home is a popular choice to reduce electricity costs and im...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Min, Abdalla, Modawy Adam Ali
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8963117/
https://www.ncbi.nlm.nih.gov/pubmed/35214211
http://dx.doi.org/10.3390/s22041306
Descripción
Sumario:With the emerging of the smart grid, it has become easier for consumers to control their consumption. The efficient use of the integration of renewable energy sources with electric vehicle (EV) and energy storage systems (ESSs) in the smart home is a popular choice to reduce electricity costs and improve the stability of the grid. Therefore, this study presents optimal energy management based on the Jaya algorithm for controlling energy flow in the smart home that contains photovoltaic generation (PV), integrated with ESS and EV. The objective of the proposed energy management is to reduce electricity cost while meeting the household load demand and energy requirement for the EV trip distance. By using the Jaya algorithm, the modes of home-to-vehicle (H2V) and vehicle-to-home (V2H) are controlled, in addition to controlling the purchase of energy from the grid and sale of the energy to the grid from surplus PV generation and ESS. Before EV participation in the V2H process, the amount of energy stored in the electric vehicle battery will be verified to be more than the energy amount required for the remaining EV trip to ensure that the required energy for the remaining EV trip is satisfied. Simulation results highlight the performance of the optimal energy scheduling to achieve the reduction of the daily electricity cost and meeting of load demand and EV energy required. The simulation results prove that optimal energy management solutions can be found with significant electricity cost savings. In addition, Jaya is compared with the particle swarm optimization (PSO) algorithm in order to evaluate its performance. Jaya outperforms PSO in terms of achieving optimal energy management objectives.