Cargando…
Noise-Transfer2Clean: denoising cryo-EM images based on noise modeling and transfer
MOTIVATION: Cryo-electron microscopy (cryo-EM) is a widely used technology for ultrastructure determination, which constructs the 3D structures of protein and macromolecular complex from a set of 2D micrographs. However, limited by the electron beam dose, the micrographs in cryo-EM generally suffer...
Autores principales: | Li, Hongjia, Zhang, Hui, Wan, Xiaohua, Yang, Zhidong, Li, Chengmin, Li, Jintao, Han, Renmin, Zhu, Ping, Zhang, Fa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8963287/ https://www.ncbi.nlm.nih.gov/pubmed/35134862 http://dx.doi.org/10.1093/bioinformatics/btac052 |
Ejemplares similares
-
CDAE: A Cascade of Denoising Autoencoders for Noise Reduction in the Clustering of Single-Particle Cryo-EM Images
por: Lei, Houchao, et al.
Publicado: (2021) -
Topaz-Denoise: general deep denoising models for cryoEM and cryoET
por: Bepler, Tristan, et al.
Publicado: (2020) -
Likelihood-based signal and noise analysis for docking of models into cryo-EM maps
por: Read, Randy J., et al.
Publicado: (2023) -
Enhancing the signal-to-noise ratio and generating contrast for cryo-EM images with convolutional neural networks
por: Palovcak, Eugene, et al.
Publicado: (2020) -
Denoising Vanilla Autoencoder for RGB and GS Images with Gaussian Noise
por: Miranda-González, Armando Adrián, et al.
Publicado: (2023)