Cargando…
Precision Detection of Dense Plums in Orchards Using the Improved YOLOv4 Model
The precision detection of dense small targets in orchards is critical for the visual perception of agricultural picking robots. At present, the visual detection algorithms for plums still have a poor recognition effect due to the characteristics of small plum shapes and dense growth. Thus, this pap...
Autores principales: | Wang, Lele, Zhao, Yingjie, Liu, Shengbo, Li, Yuanhong, Chen, Shengde, Lan, Yubin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8963500/ https://www.ncbi.nlm.nih.gov/pubmed/35360334 http://dx.doi.org/10.3389/fpls.2022.839269 |
Ejemplares similares
-
Fast and precise detection of litchi fruits for yield estimation based on the improved YOLOv5 model
por: Wang, Lele, et al.
Publicado: (2022) -
Precision detection of crop diseases based on improved YOLOv5 model
por: Zhao, Yun, et al.
Publicado: (2023) -
YOLOv7-Plum: Advancing Plum Fruit Detection in Natural Environments with Deep Learning
por: Tang, Rong, et al.
Publicado: (2023) -
TIA-YOLOv5: An improved YOLOv5 network for real-time detection of crop and weed in the field
por: Wang, Aichen, et al.
Publicado: (2022) -
Recognition of terminal buds of densely-planted Chinese fir seedlings using improved YOLOv5 by integrating attention mechanism
por: Ye, Zhangxi, et al.
Publicado: (2022)