Cargando…
CPIELA: Computational Prediction of Plant Protein–Protein Interactions by Ensemble Learning Approach From Protein Sequences and Evolutionary Information
Identification and characterization of plant protein–protein interactions (PPIs) are critical in elucidating the functions of proteins and molecular mechanisms in a plant cell. Although experimentally validated plant PPIs data have become increasingly available in diverse plant species, the high-thr...
Autores principales: | Li, Li-Ping, Zhang, Bo, Cheng, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8963800/ https://www.ncbi.nlm.nih.gov/pubmed/35360876 http://dx.doi.org/10.3389/fgene.2022.857839 |
Ejemplares similares
-
Accurate Prediction of ncRNA-Protein Interactions From the Integration of Sequence and Evolutionary Information
por: Zhan, Zhao-Hui, et al.
Publicado: (2018) -
SAWRPI: A Stacking Ensemble Framework With Adaptive Weight for Predicting ncRNA-Protein Interactions Using Sequence Information
por: Ren, Zhong-Hao, et al.
Publicado: (2022) -
EnsembleDL-ATG: Identifying autophagy proteins by integrating their sequence and evolutionary information using an ensemble deep learning framework
por: Yu, Lezheng, et al.
Publicado: (2023) -
An Ensemble Classifier to Predict Protein–Protein Interactions by Combining PSSM-based Evolutionary Information with Local Binary Pattern Model
por: Li, Yang, et al.
Publicado: (2019) -
De novo Prediction of Moonlighting Proteins Using Multimodal Deep Ensemble Learning
por: Li, Ying, et al.
Publicado: (2021)