Cargando…
Construction and Interpretation of Prediction Model of Teicoplanin Trough Concentration via Machine Learning
OBJECTIVE: To establish an optimal model to predict the teicoplanin trough concentrations by machine learning, and explain the feature importance in the prediction model using the SHapley Additive exPlanation (SHAP) method. METHODS: A retrospective study was performed on 279 therapeutic drug monitor...
Autores principales: | Ma, Pan, Liu, Ruixiang, Gu, Wenrui, Dai, Qing, Gan, Yu, Cen, Jing, Shang, Shenglan, Liu, Fang, Chen, Yongchuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8963816/ https://www.ncbi.nlm.nih.gov/pubmed/35360734 http://dx.doi.org/10.3389/fmed.2022.808969 |
Ejemplares similares
-
Loading regimen required to rapidly achieve therapeutic trough plasma concentration of teicoplanin and evaluation of clinical features
por: Seki, Masafumi, et al.
Publicado: (2012) -
Retrospective analysis of relationships among the dose regimen, trough concentration, efficacy, and safety of teicoplanin in Chinese patients with moderate–severe Gram-positive infections
por: Zhou, Lijuan, et al.
Publicado: (2018) -
Retrospective analysis of relationships among the dose regimen, trough concentration, efficacy, and safety of teicoplanin in Chinese patients with moderate–severe Gram-positive infections [Corrigendum]
Publicado: (2019) -
Therapeutic Drug Concentrations of Teicoplanin in Clinical Settings
por: Nah, So-Yun, et al.
Publicado: (2014) -
Effect of Infliximab Dose Increase in Rheumatoid Arthritis at Different Trough Concentrations: A Cohort Study in Clinical Practice Conditions
por: Plasencia, Chamaida, et al.
Publicado: (2015)