Cargando…
COVID-19 prognostic modeling using CT radiomic features and machine learning algorithms: Analysis of a multi-institutional dataset of 14,339 patients
BACKGROUND: We aimed to analyze the prognostic power of CT-based radiomics models using data of 14,339 COVID-19 patients. METHODS: Whole lung segmentations were performed automatically using a deep learning-based model to extract 107 intensity and texture radiomics features. We used four feature sel...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Authors. Published by Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8964015/ https://www.ncbi.nlm.nih.gov/pubmed/35378436 http://dx.doi.org/10.1016/j.compbiomed.2022.105467 |
_version_ | 1784678116251140096 |
---|---|
author | Shiri, Isaac Salimi, Yazdan Pakbin, Masoumeh Hajianfar, Ghasem Avval, Atlas Haddadi Sanaat, Amirhossein Mostafaei, Shayan Akhavanallaf, Azadeh Saberi, Abdollah Mansouri, Zahra Askari, Dariush Ghasemian, Mohammadreza Sharifipour, Ehsan Sandoughdaran, Saleh Sohrabi, Ahmad Sadati, Elham Livani, Somayeh Iranpour, Pooya Kolahi, Shahriar Khateri, Maziar Bijari, Salar Atashzar, Mohammad Reza Shayesteh, Sajad P. Khosravi, Bardia Babaei, Mohammad Reza Jenabi, Elnaz Hasanian, Mohammad Shahhamzeh, Alireza Foroghi Ghomi, Seyaed Yaser Mozafari, Abolfazl Teimouri, Arash Movaseghi, Fatemeh Ahmari, Azin Goharpey, Neda Bozorgmehr, Rama Shirzad-Aski, Hesamaddin Mortazavi, Roozbeh Karimi, Jalal Mortazavi, Nazanin Besharat, Sima Afsharpad, Mandana Abdollahi, Hamid Geramifar, Parham Radmard, Amir Reza Arabi, Hossein Rezaei-Kalantari, Kiara Oveisi, Mehrdad Rahmim, Arman Zaidi, Habib |
author_facet | Shiri, Isaac Salimi, Yazdan Pakbin, Masoumeh Hajianfar, Ghasem Avval, Atlas Haddadi Sanaat, Amirhossein Mostafaei, Shayan Akhavanallaf, Azadeh Saberi, Abdollah Mansouri, Zahra Askari, Dariush Ghasemian, Mohammadreza Sharifipour, Ehsan Sandoughdaran, Saleh Sohrabi, Ahmad Sadati, Elham Livani, Somayeh Iranpour, Pooya Kolahi, Shahriar Khateri, Maziar Bijari, Salar Atashzar, Mohammad Reza Shayesteh, Sajad P. Khosravi, Bardia Babaei, Mohammad Reza Jenabi, Elnaz Hasanian, Mohammad Shahhamzeh, Alireza Foroghi Ghomi, Seyaed Yaser Mozafari, Abolfazl Teimouri, Arash Movaseghi, Fatemeh Ahmari, Azin Goharpey, Neda Bozorgmehr, Rama Shirzad-Aski, Hesamaddin Mortazavi, Roozbeh Karimi, Jalal Mortazavi, Nazanin Besharat, Sima Afsharpad, Mandana Abdollahi, Hamid Geramifar, Parham Radmard, Amir Reza Arabi, Hossein Rezaei-Kalantari, Kiara Oveisi, Mehrdad Rahmim, Arman Zaidi, Habib |
author_sort | Shiri, Isaac |
collection | PubMed |
description | BACKGROUND: We aimed to analyze the prognostic power of CT-based radiomics models using data of 14,339 COVID-19 patients. METHODS: Whole lung segmentations were performed automatically using a deep learning-based model to extract 107 intensity and texture radiomics features. We used four feature selection algorithms and seven classifiers. We evaluated the models using ten different splitting and cross-validation strategies, including non-harmonized and ComBat-harmonized datasets. The sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were reported. RESULTS: In the test dataset (4,301) consisting of CT and/or RT-PCR positive cases, AUC, sensitivity, and specificity of 0.83 ± 0.01 (CI95%: 0.81–0.85), 0.81, and 0.72, respectively, were obtained by ANOVA feature selector + Random Forest (RF) classifier. Similar results were achieved in RT-PCR-only positive test sets (3,644). In ComBat harmonized dataset, Relief feature selector + RF classifier resulted in the highest performance of AUC, reaching 0.83 ± 0.01 (CI95%: 0.81–0.85), with a sensitivity and specificity of 0.77 and 0.74, respectively. ComBat harmonization did not depict statistically significant improvement compared to a non-harmonized dataset. In leave-one-center-out, the combination of ANOVA feature selector and RF classifier resulted in the highest performance. CONCLUSION: Lung CT radiomics features can be used for robust prognostic modeling of COVID-19. The predictive power of the proposed CT radiomics model is more reliable when using a large multicentric heterogeneous dataset, and may be used prospectively in clinical setting to manage COVID-19 patients. |
format | Online Article Text |
id | pubmed-8964015 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Authors. Published by Elsevier Ltd. |
record_format | MEDLINE/PubMed |
spelling | pubmed-89640152022-03-30 COVID-19 prognostic modeling using CT radiomic features and machine learning algorithms: Analysis of a multi-institutional dataset of 14,339 patients Shiri, Isaac Salimi, Yazdan Pakbin, Masoumeh Hajianfar, Ghasem Avval, Atlas Haddadi Sanaat, Amirhossein Mostafaei, Shayan Akhavanallaf, Azadeh Saberi, Abdollah Mansouri, Zahra Askari, Dariush Ghasemian, Mohammadreza Sharifipour, Ehsan Sandoughdaran, Saleh Sohrabi, Ahmad Sadati, Elham Livani, Somayeh Iranpour, Pooya Kolahi, Shahriar Khateri, Maziar Bijari, Salar Atashzar, Mohammad Reza Shayesteh, Sajad P. Khosravi, Bardia Babaei, Mohammad Reza Jenabi, Elnaz Hasanian, Mohammad Shahhamzeh, Alireza Foroghi Ghomi, Seyaed Yaser Mozafari, Abolfazl Teimouri, Arash Movaseghi, Fatemeh Ahmari, Azin Goharpey, Neda Bozorgmehr, Rama Shirzad-Aski, Hesamaddin Mortazavi, Roozbeh Karimi, Jalal Mortazavi, Nazanin Besharat, Sima Afsharpad, Mandana Abdollahi, Hamid Geramifar, Parham Radmard, Amir Reza Arabi, Hossein Rezaei-Kalantari, Kiara Oveisi, Mehrdad Rahmim, Arman Zaidi, Habib Comput Biol Med Article BACKGROUND: We aimed to analyze the prognostic power of CT-based radiomics models using data of 14,339 COVID-19 patients. METHODS: Whole lung segmentations were performed automatically using a deep learning-based model to extract 107 intensity and texture radiomics features. We used four feature selection algorithms and seven classifiers. We evaluated the models using ten different splitting and cross-validation strategies, including non-harmonized and ComBat-harmonized datasets. The sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were reported. RESULTS: In the test dataset (4,301) consisting of CT and/or RT-PCR positive cases, AUC, sensitivity, and specificity of 0.83 ± 0.01 (CI95%: 0.81–0.85), 0.81, and 0.72, respectively, were obtained by ANOVA feature selector + Random Forest (RF) classifier. Similar results were achieved in RT-PCR-only positive test sets (3,644). In ComBat harmonized dataset, Relief feature selector + RF classifier resulted in the highest performance of AUC, reaching 0.83 ± 0.01 (CI95%: 0.81–0.85), with a sensitivity and specificity of 0.77 and 0.74, respectively. ComBat harmonization did not depict statistically significant improvement compared to a non-harmonized dataset. In leave-one-center-out, the combination of ANOVA feature selector and RF classifier resulted in the highest performance. CONCLUSION: Lung CT radiomics features can be used for robust prognostic modeling of COVID-19. The predictive power of the proposed CT radiomics model is more reliable when using a large multicentric heterogeneous dataset, and may be used prospectively in clinical setting to manage COVID-19 patients. The Authors. Published by Elsevier Ltd. 2022-06 2022-03-29 /pmc/articles/PMC8964015/ /pubmed/35378436 http://dx.doi.org/10.1016/j.compbiomed.2022.105467 Text en © 2022 The Authors Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
spellingShingle | Article Shiri, Isaac Salimi, Yazdan Pakbin, Masoumeh Hajianfar, Ghasem Avval, Atlas Haddadi Sanaat, Amirhossein Mostafaei, Shayan Akhavanallaf, Azadeh Saberi, Abdollah Mansouri, Zahra Askari, Dariush Ghasemian, Mohammadreza Sharifipour, Ehsan Sandoughdaran, Saleh Sohrabi, Ahmad Sadati, Elham Livani, Somayeh Iranpour, Pooya Kolahi, Shahriar Khateri, Maziar Bijari, Salar Atashzar, Mohammad Reza Shayesteh, Sajad P. Khosravi, Bardia Babaei, Mohammad Reza Jenabi, Elnaz Hasanian, Mohammad Shahhamzeh, Alireza Foroghi Ghomi, Seyaed Yaser Mozafari, Abolfazl Teimouri, Arash Movaseghi, Fatemeh Ahmari, Azin Goharpey, Neda Bozorgmehr, Rama Shirzad-Aski, Hesamaddin Mortazavi, Roozbeh Karimi, Jalal Mortazavi, Nazanin Besharat, Sima Afsharpad, Mandana Abdollahi, Hamid Geramifar, Parham Radmard, Amir Reza Arabi, Hossein Rezaei-Kalantari, Kiara Oveisi, Mehrdad Rahmim, Arman Zaidi, Habib COVID-19 prognostic modeling using CT radiomic features and machine learning algorithms: Analysis of a multi-institutional dataset of 14,339 patients |
title | COVID-19 prognostic modeling using CT radiomic features and machine learning algorithms: Analysis of a multi-institutional dataset of 14,339 patients |
title_full | COVID-19 prognostic modeling using CT radiomic features and machine learning algorithms: Analysis of a multi-institutional dataset of 14,339 patients |
title_fullStr | COVID-19 prognostic modeling using CT radiomic features and machine learning algorithms: Analysis of a multi-institutional dataset of 14,339 patients |
title_full_unstemmed | COVID-19 prognostic modeling using CT radiomic features and machine learning algorithms: Analysis of a multi-institutional dataset of 14,339 patients |
title_short | COVID-19 prognostic modeling using CT radiomic features and machine learning algorithms: Analysis of a multi-institutional dataset of 14,339 patients |
title_sort | covid-19 prognostic modeling using ct radiomic features and machine learning algorithms: analysis of a multi-institutional dataset of 14,339 patients |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8964015/ https://www.ncbi.nlm.nih.gov/pubmed/35378436 http://dx.doi.org/10.1016/j.compbiomed.2022.105467 |
work_keys_str_mv | AT shiriisaac covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT salimiyazdan covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT pakbinmasoumeh covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT hajianfarghasem covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT avvalatlashaddadi covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT sanaatamirhossein covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT mostafaeishayan covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT akhavanallafazadeh covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT saberiabdollah covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT mansourizahra covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT askaridariush covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT ghasemianmohammadreza covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT sharifipourehsan covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT sandoughdaransaleh covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT sohrabiahmad covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT sadatielham covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT livanisomayeh covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT iranpourpooya covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT kolahishahriar covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT khaterimaziar covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT bijarisalar covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT atashzarmohammadreza covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT shayestehsajadp covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT khosravibardia covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT babaeimohammadreza covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT jenabielnaz covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT hasanianmohammad covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT shahhamzehalireza covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT foroghighomiseyaedyaser covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT mozafariabolfazl covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT teimouriarash covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT movaseghifatemeh covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT ahmariazin covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT goharpeyneda covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT bozorgmehrrama covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT shirzadaskihesamaddin covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT mortazaviroozbeh covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT karimijalal covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT mortazavinazanin covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT besharatsima covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT afsharpadmandana covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT abdollahihamid covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT geramifarparham covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT radmardamirreza covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT arabihossein covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT rezaeikalantarikiara covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT oveisimehrdad covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT rahmimarman covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients AT zaidihabib covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients |