Cargando…

COVID-19 prognostic modeling using CT radiomic features and machine learning algorithms: Analysis of a multi-institutional dataset of 14,339 patients

BACKGROUND: We aimed to analyze the prognostic power of CT-based radiomics models using data of 14,339 COVID-19 patients. METHODS: Whole lung segmentations were performed automatically using a deep learning-based model to extract 107 intensity and texture radiomics features. We used four feature sel...

Descripción completa

Detalles Bibliográficos
Autores principales: Shiri, Isaac, Salimi, Yazdan, Pakbin, Masoumeh, Hajianfar, Ghasem, Avval, Atlas Haddadi, Sanaat, Amirhossein, Mostafaei, Shayan, Akhavanallaf, Azadeh, Saberi, Abdollah, Mansouri, Zahra, Askari, Dariush, Ghasemian, Mohammadreza, Sharifipour, Ehsan, Sandoughdaran, Saleh, Sohrabi, Ahmad, Sadati, Elham, Livani, Somayeh, Iranpour, Pooya, Kolahi, Shahriar, Khateri, Maziar, Bijari, Salar, Atashzar, Mohammad Reza, Shayesteh, Sajad P., Khosravi, Bardia, Babaei, Mohammad Reza, Jenabi, Elnaz, Hasanian, Mohammad, Shahhamzeh, Alireza, Foroghi Ghomi, Seyaed Yaser, Mozafari, Abolfazl, Teimouri, Arash, Movaseghi, Fatemeh, Ahmari, Azin, Goharpey, Neda, Bozorgmehr, Rama, Shirzad-Aski, Hesamaddin, Mortazavi, Roozbeh, Karimi, Jalal, Mortazavi, Nazanin, Besharat, Sima, Afsharpad, Mandana, Abdollahi, Hamid, Geramifar, Parham, Radmard, Amir Reza, Arabi, Hossein, Rezaei-Kalantari, Kiara, Oveisi, Mehrdad, Rahmim, Arman, Zaidi, Habib
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Authors. Published by Elsevier Ltd. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8964015/
https://www.ncbi.nlm.nih.gov/pubmed/35378436
http://dx.doi.org/10.1016/j.compbiomed.2022.105467
_version_ 1784678116251140096
author Shiri, Isaac
Salimi, Yazdan
Pakbin, Masoumeh
Hajianfar, Ghasem
Avval, Atlas Haddadi
Sanaat, Amirhossein
Mostafaei, Shayan
Akhavanallaf, Azadeh
Saberi, Abdollah
Mansouri, Zahra
Askari, Dariush
Ghasemian, Mohammadreza
Sharifipour, Ehsan
Sandoughdaran, Saleh
Sohrabi, Ahmad
Sadati, Elham
Livani, Somayeh
Iranpour, Pooya
Kolahi, Shahriar
Khateri, Maziar
Bijari, Salar
Atashzar, Mohammad Reza
Shayesteh, Sajad P.
Khosravi, Bardia
Babaei, Mohammad Reza
Jenabi, Elnaz
Hasanian, Mohammad
Shahhamzeh, Alireza
Foroghi Ghomi, Seyaed Yaser
Mozafari, Abolfazl
Teimouri, Arash
Movaseghi, Fatemeh
Ahmari, Azin
Goharpey, Neda
Bozorgmehr, Rama
Shirzad-Aski, Hesamaddin
Mortazavi, Roozbeh
Karimi, Jalal
Mortazavi, Nazanin
Besharat, Sima
Afsharpad, Mandana
Abdollahi, Hamid
Geramifar, Parham
Radmard, Amir Reza
Arabi, Hossein
Rezaei-Kalantari, Kiara
Oveisi, Mehrdad
Rahmim, Arman
Zaidi, Habib
author_facet Shiri, Isaac
Salimi, Yazdan
Pakbin, Masoumeh
Hajianfar, Ghasem
Avval, Atlas Haddadi
Sanaat, Amirhossein
Mostafaei, Shayan
Akhavanallaf, Azadeh
Saberi, Abdollah
Mansouri, Zahra
Askari, Dariush
Ghasemian, Mohammadreza
Sharifipour, Ehsan
Sandoughdaran, Saleh
Sohrabi, Ahmad
Sadati, Elham
Livani, Somayeh
Iranpour, Pooya
Kolahi, Shahriar
Khateri, Maziar
Bijari, Salar
Atashzar, Mohammad Reza
Shayesteh, Sajad P.
Khosravi, Bardia
Babaei, Mohammad Reza
Jenabi, Elnaz
Hasanian, Mohammad
Shahhamzeh, Alireza
Foroghi Ghomi, Seyaed Yaser
Mozafari, Abolfazl
Teimouri, Arash
Movaseghi, Fatemeh
Ahmari, Azin
Goharpey, Neda
Bozorgmehr, Rama
Shirzad-Aski, Hesamaddin
Mortazavi, Roozbeh
Karimi, Jalal
Mortazavi, Nazanin
Besharat, Sima
Afsharpad, Mandana
Abdollahi, Hamid
Geramifar, Parham
Radmard, Amir Reza
Arabi, Hossein
Rezaei-Kalantari, Kiara
Oveisi, Mehrdad
Rahmim, Arman
Zaidi, Habib
author_sort Shiri, Isaac
collection PubMed
description BACKGROUND: We aimed to analyze the prognostic power of CT-based radiomics models using data of 14,339 COVID-19 patients. METHODS: Whole lung segmentations were performed automatically using a deep learning-based model to extract 107 intensity and texture radiomics features. We used four feature selection algorithms and seven classifiers. We evaluated the models using ten different splitting and cross-validation strategies, including non-harmonized and ComBat-harmonized datasets. The sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were reported. RESULTS: In the test dataset (4,301) consisting of CT and/or RT-PCR positive cases, AUC, sensitivity, and specificity of 0.83 ± 0.01 (CI95%: 0.81–0.85), 0.81, and 0.72, respectively, were obtained by ANOVA feature selector + Random Forest (RF) classifier. Similar results were achieved in RT-PCR-only positive test sets (3,644). In ComBat harmonized dataset, Relief feature selector + RF classifier resulted in the highest performance of AUC, reaching 0.83 ± 0.01 (CI95%: 0.81–0.85), with a sensitivity and specificity of 0.77 and 0.74, respectively. ComBat harmonization did not depict statistically significant improvement compared to a non-harmonized dataset. In leave-one-center-out, the combination of ANOVA feature selector and RF classifier resulted in the highest performance. CONCLUSION: Lung CT radiomics features can be used for robust prognostic modeling of COVID-19. The predictive power of the proposed CT radiomics model is more reliable when using a large multicentric heterogeneous dataset, and may be used prospectively in clinical setting to manage COVID-19 patients.
format Online
Article
Text
id pubmed-8964015
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher The Authors. Published by Elsevier Ltd.
record_format MEDLINE/PubMed
spelling pubmed-89640152022-03-30 COVID-19 prognostic modeling using CT radiomic features and machine learning algorithms: Analysis of a multi-institutional dataset of 14,339 patients Shiri, Isaac Salimi, Yazdan Pakbin, Masoumeh Hajianfar, Ghasem Avval, Atlas Haddadi Sanaat, Amirhossein Mostafaei, Shayan Akhavanallaf, Azadeh Saberi, Abdollah Mansouri, Zahra Askari, Dariush Ghasemian, Mohammadreza Sharifipour, Ehsan Sandoughdaran, Saleh Sohrabi, Ahmad Sadati, Elham Livani, Somayeh Iranpour, Pooya Kolahi, Shahriar Khateri, Maziar Bijari, Salar Atashzar, Mohammad Reza Shayesteh, Sajad P. Khosravi, Bardia Babaei, Mohammad Reza Jenabi, Elnaz Hasanian, Mohammad Shahhamzeh, Alireza Foroghi Ghomi, Seyaed Yaser Mozafari, Abolfazl Teimouri, Arash Movaseghi, Fatemeh Ahmari, Azin Goharpey, Neda Bozorgmehr, Rama Shirzad-Aski, Hesamaddin Mortazavi, Roozbeh Karimi, Jalal Mortazavi, Nazanin Besharat, Sima Afsharpad, Mandana Abdollahi, Hamid Geramifar, Parham Radmard, Amir Reza Arabi, Hossein Rezaei-Kalantari, Kiara Oveisi, Mehrdad Rahmim, Arman Zaidi, Habib Comput Biol Med Article BACKGROUND: We aimed to analyze the prognostic power of CT-based radiomics models using data of 14,339 COVID-19 patients. METHODS: Whole lung segmentations were performed automatically using a deep learning-based model to extract 107 intensity and texture radiomics features. We used four feature selection algorithms and seven classifiers. We evaluated the models using ten different splitting and cross-validation strategies, including non-harmonized and ComBat-harmonized datasets. The sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were reported. RESULTS: In the test dataset (4,301) consisting of CT and/or RT-PCR positive cases, AUC, sensitivity, and specificity of 0.83 ± 0.01 (CI95%: 0.81–0.85), 0.81, and 0.72, respectively, were obtained by ANOVA feature selector + Random Forest (RF) classifier. Similar results were achieved in RT-PCR-only positive test sets (3,644). In ComBat harmonized dataset, Relief feature selector + RF classifier resulted in the highest performance of AUC, reaching 0.83 ± 0.01 (CI95%: 0.81–0.85), with a sensitivity and specificity of 0.77 and 0.74, respectively. ComBat harmonization did not depict statistically significant improvement compared to a non-harmonized dataset. In leave-one-center-out, the combination of ANOVA feature selector and RF classifier resulted in the highest performance. CONCLUSION: Lung CT radiomics features can be used for robust prognostic modeling of COVID-19. The predictive power of the proposed CT radiomics model is more reliable when using a large multicentric heterogeneous dataset, and may be used prospectively in clinical setting to manage COVID-19 patients. The Authors. Published by Elsevier Ltd. 2022-06 2022-03-29 /pmc/articles/PMC8964015/ /pubmed/35378436 http://dx.doi.org/10.1016/j.compbiomed.2022.105467 Text en © 2022 The Authors Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
spellingShingle Article
Shiri, Isaac
Salimi, Yazdan
Pakbin, Masoumeh
Hajianfar, Ghasem
Avval, Atlas Haddadi
Sanaat, Amirhossein
Mostafaei, Shayan
Akhavanallaf, Azadeh
Saberi, Abdollah
Mansouri, Zahra
Askari, Dariush
Ghasemian, Mohammadreza
Sharifipour, Ehsan
Sandoughdaran, Saleh
Sohrabi, Ahmad
Sadati, Elham
Livani, Somayeh
Iranpour, Pooya
Kolahi, Shahriar
Khateri, Maziar
Bijari, Salar
Atashzar, Mohammad Reza
Shayesteh, Sajad P.
Khosravi, Bardia
Babaei, Mohammad Reza
Jenabi, Elnaz
Hasanian, Mohammad
Shahhamzeh, Alireza
Foroghi Ghomi, Seyaed Yaser
Mozafari, Abolfazl
Teimouri, Arash
Movaseghi, Fatemeh
Ahmari, Azin
Goharpey, Neda
Bozorgmehr, Rama
Shirzad-Aski, Hesamaddin
Mortazavi, Roozbeh
Karimi, Jalal
Mortazavi, Nazanin
Besharat, Sima
Afsharpad, Mandana
Abdollahi, Hamid
Geramifar, Parham
Radmard, Amir Reza
Arabi, Hossein
Rezaei-Kalantari, Kiara
Oveisi, Mehrdad
Rahmim, Arman
Zaidi, Habib
COVID-19 prognostic modeling using CT radiomic features and machine learning algorithms: Analysis of a multi-institutional dataset of 14,339 patients
title COVID-19 prognostic modeling using CT radiomic features and machine learning algorithms: Analysis of a multi-institutional dataset of 14,339 patients
title_full COVID-19 prognostic modeling using CT radiomic features and machine learning algorithms: Analysis of a multi-institutional dataset of 14,339 patients
title_fullStr COVID-19 prognostic modeling using CT radiomic features and machine learning algorithms: Analysis of a multi-institutional dataset of 14,339 patients
title_full_unstemmed COVID-19 prognostic modeling using CT radiomic features and machine learning algorithms: Analysis of a multi-institutional dataset of 14,339 patients
title_short COVID-19 prognostic modeling using CT radiomic features and machine learning algorithms: Analysis of a multi-institutional dataset of 14,339 patients
title_sort covid-19 prognostic modeling using ct radiomic features and machine learning algorithms: analysis of a multi-institutional dataset of 14,339 patients
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8964015/
https://www.ncbi.nlm.nih.gov/pubmed/35378436
http://dx.doi.org/10.1016/j.compbiomed.2022.105467
work_keys_str_mv AT shiriisaac covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT salimiyazdan covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT pakbinmasoumeh covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT hajianfarghasem covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT avvalatlashaddadi covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT sanaatamirhossein covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT mostafaeishayan covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT akhavanallafazadeh covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT saberiabdollah covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT mansourizahra covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT askaridariush covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT ghasemianmohammadreza covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT sharifipourehsan covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT sandoughdaransaleh covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT sohrabiahmad covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT sadatielham covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT livanisomayeh covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT iranpourpooya covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT kolahishahriar covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT khaterimaziar covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT bijarisalar covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT atashzarmohammadreza covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT shayestehsajadp covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT khosravibardia covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT babaeimohammadreza covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT jenabielnaz covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT hasanianmohammad covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT shahhamzehalireza covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT foroghighomiseyaedyaser covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT mozafariabolfazl covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT teimouriarash covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT movaseghifatemeh covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT ahmariazin covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT goharpeyneda covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT bozorgmehrrama covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT shirzadaskihesamaddin covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT mortazaviroozbeh covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT karimijalal covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT mortazavinazanin covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT besharatsima covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT afsharpadmandana covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT abdollahihamid covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT geramifarparham covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT radmardamirreza covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT arabihossein covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT rezaeikalantarikiara covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT oveisimehrdad covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT rahmimarman covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients
AT zaidihabib covid19prognosticmodelingusingctradiomicfeaturesandmachinelearningalgorithmsanalysisofamultiinstitutionaldatasetof14339patients