Cargando…
Low-Rank Plus Sparse Decomposition of fMRI Data With Application to Alzheimer's Disease
Studying functional brain connectivity plays an important role in understanding how human brain functions and neuropsychological diseases such as autism, attention-deficit hyperactivity disorder, and Alzheimer's disease (AD). Functional magnetic resonance imaging (fMRI) is one of the most popul...
Autores principales: | Tu, Wei, Fu, Fangfang, Kong, Linglong, Jiang, Bei, Cobzas, Dana, Huang, Chao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8964048/ https://www.ncbi.nlm.nih.gov/pubmed/35360172 http://dx.doi.org/10.3389/fnins.2022.826316 |
Ejemplares similares
-
Rank-One and Transformed Sparse Decomposition for Dynamic Cardiac MRI
por: Xiu, Xianchao, et al.
Publicado: (2015) -
Low-Rank and Sparse Decomposition Model for Accelerating Dynamic MRI Reconstruction
por: Chen, Junbo, et al.
Publicado: (2017) -
Phase fMRI Reveals More Sparseness and Balance of Rest Brain Functional Connectivity Than Magnitude fMRI
por: Chen, Zikuan, et al.
Publicado: (2019) -
Stable Anatomy Detection in Multimodal Imaging Through Sparse Group Regularization: A Comparative Study of Iron Accumulation in the Aging Brain
por: Pietrosanu, Matthew, et al.
Publicado: (2021) -
A Sparse EEG-Informed fMRI Model for Hybrid EEG-fMRI Neurofeedback Prediction
por: Cury, Claire, et al.
Publicado: (2020)