Cargando…
Liquid State Machine on SpiNNaker for Spatio-Temporal Classification Tasks
Liquid State Machines (LSMs) are computing reservoirs composed of recurrently connected Spiking Neural Networks which have attracted research interest for their modeling capacity of biological structures and as promising pattern recognition tools suitable for their implementation in neuromorphic pro...
Autores principales: | Patiño-Saucedo, Alberto, Rostro-González, Horacio, Serrano-Gotarredona, Teresa, Linares-Barranco, Bernabé |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8964061/ https://www.ncbi.nlm.nih.gov/pubmed/35360182 http://dx.doi.org/10.3389/fnins.2022.819063 |
Ejemplares similares
-
SpiNNaker2 - Neuromorphic computing
por: Mayr, Christian
Publicado: (2022) -
SpiNNTools: The Execution Engine for the SpiNNaker Platform
por: Rowley, Andrew G. D., et al.
Publicado: (2019) -
A Spiking Neural Network Model of the Lateral Geniculate Nucleus on the SpiNNaker Machine
por: Sen-Bhattacharya, Basabdatta, et al.
Publicado: (2017) -
Neuromodulated Synaptic Plasticity on the SpiNNaker Neuromorphic System
por: Mikaitis, Mantas, et al.
Publicado: (2018) -
A framework for plasticity implementation on the SpiNNaker neural architecture
por: Galluppi, Francesco, et al.
Publicado: (2015)