Cargando…
An MRI-Based Radiomic Model for Individualized Prediction of Hepatocellular Carcinoma in Patients With Hepatitis B Virus-Related Cirrhosis
OBJECTIVE: To develop and validate a radiomic nomogram for individualized prediction of hepatocellular carcinoma (HCC) in HBV cirrhosis patients based on baseline magnetic resonance imaging examinations and clinical data. METHODS: 364 patients with HBV cirrhosis from five hospitals were assigned to...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8964115/ https://www.ncbi.nlm.nih.gov/pubmed/35359425 http://dx.doi.org/10.3389/fonc.2022.800787 |
_version_ | 1784678139330297856 |
---|---|
author | Wei, Yichen Gong, Jie He, Xin Liu, Bo Liu, Tiejun Yang, Shuohui Zhou, Zhipeng Liang, Lingyan Zhan, Songhua Xia, Ziqiang Duan, Gaoxiong Lin, Bin Han, Qiuli Li, Shasha Qin, Wei Pickhardt, Perry J. Deng, Demao |
author_facet | Wei, Yichen Gong, Jie He, Xin Liu, Bo Liu, Tiejun Yang, Shuohui Zhou, Zhipeng Liang, Lingyan Zhan, Songhua Xia, Ziqiang Duan, Gaoxiong Lin, Bin Han, Qiuli Li, Shasha Qin, Wei Pickhardt, Perry J. Deng, Demao |
author_sort | Wei, Yichen |
collection | PubMed |
description | OBJECTIVE: To develop and validate a radiomic nomogram for individualized prediction of hepatocellular carcinoma (HCC) in HBV cirrhosis patients based on baseline magnetic resonance imaging examinations and clinical data. METHODS: 364 patients with HBV cirrhosis from five hospitals were assigned to the training, internal validation, external validation-1 or external validation-2 cohort. All patients underwent baseline magnetic resonance image (MRI) scans and clinical follow-up within three-year time. Clinical risk factors and MRI-based features were extracted and analyzed. The radiomic signatures were built using the radiomics-score (Rad-score) that calculated for each patient as a linear weighted combination of selected MRI-based features. Prognostic performances of the clinical and radiomic nomograms were evaluated with Cox modeling in the training and validation cohorts. RESULTS: Eighteen features were selected for inclusion in the Rad-score prognostic model. The radiomic signature from multi-sequence MRI yielded a concordance index (C-index) of 0.710, 0.681, 0.632 and 0.658 in the training, internal validation, external validation-1, external validation-2 cohorts, respectively. Sex and Child-Turcotte-Pugh (CTP) class were the most prognostic clinical risk factors in univariate Cox proportional hazards analyses. The radiomic combined nomogram that integrated the radiomic signature with the clinical factors yielded a C-index of 0.746, 0.710, and 0.641 in the training, internal validation, and external validation-1 cohorts, respectively, which was an improvement over either the clinical nomogram or radiomic signature alone. CONCLUSION: We developed an MRI-based radiomic combined nomogram with good discrimination ability for the individualized prediction of HCC in HBV cirrhosis patients within three-year time. |
format | Online Article Text |
id | pubmed-8964115 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-89641152022-03-30 An MRI-Based Radiomic Model for Individualized Prediction of Hepatocellular Carcinoma in Patients With Hepatitis B Virus-Related Cirrhosis Wei, Yichen Gong, Jie He, Xin Liu, Bo Liu, Tiejun Yang, Shuohui Zhou, Zhipeng Liang, Lingyan Zhan, Songhua Xia, Ziqiang Duan, Gaoxiong Lin, Bin Han, Qiuli Li, Shasha Qin, Wei Pickhardt, Perry J. Deng, Demao Front Oncol Oncology OBJECTIVE: To develop and validate a radiomic nomogram for individualized prediction of hepatocellular carcinoma (HCC) in HBV cirrhosis patients based on baseline magnetic resonance imaging examinations and clinical data. METHODS: 364 patients with HBV cirrhosis from five hospitals were assigned to the training, internal validation, external validation-1 or external validation-2 cohort. All patients underwent baseline magnetic resonance image (MRI) scans and clinical follow-up within three-year time. Clinical risk factors and MRI-based features were extracted and analyzed. The radiomic signatures were built using the radiomics-score (Rad-score) that calculated for each patient as a linear weighted combination of selected MRI-based features. Prognostic performances of the clinical and radiomic nomograms were evaluated with Cox modeling in the training and validation cohorts. RESULTS: Eighteen features were selected for inclusion in the Rad-score prognostic model. The radiomic signature from multi-sequence MRI yielded a concordance index (C-index) of 0.710, 0.681, 0.632 and 0.658 in the training, internal validation, external validation-1, external validation-2 cohorts, respectively. Sex and Child-Turcotte-Pugh (CTP) class were the most prognostic clinical risk factors in univariate Cox proportional hazards analyses. The radiomic combined nomogram that integrated the radiomic signature with the clinical factors yielded a C-index of 0.746, 0.710, and 0.641 in the training, internal validation, and external validation-1 cohorts, respectively, which was an improvement over either the clinical nomogram or radiomic signature alone. CONCLUSION: We developed an MRI-based radiomic combined nomogram with good discrimination ability for the individualized prediction of HCC in HBV cirrhosis patients within three-year time. Frontiers Media S.A. 2022-03-14 /pmc/articles/PMC8964115/ /pubmed/35359425 http://dx.doi.org/10.3389/fonc.2022.800787 Text en Copyright © 2022 Wei, Gong, He, Liu, Liu, Yang, Zhou, Liang, Zhan, Xia, Duan, Lin, Han, Li, Qin, Pickhardt and Deng https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Oncology Wei, Yichen Gong, Jie He, Xin Liu, Bo Liu, Tiejun Yang, Shuohui Zhou, Zhipeng Liang, Lingyan Zhan, Songhua Xia, Ziqiang Duan, Gaoxiong Lin, Bin Han, Qiuli Li, Shasha Qin, Wei Pickhardt, Perry J. Deng, Demao An MRI-Based Radiomic Model for Individualized Prediction of Hepatocellular Carcinoma in Patients With Hepatitis B Virus-Related Cirrhosis |
title | An MRI-Based Radiomic Model for Individualized Prediction of Hepatocellular Carcinoma in Patients With Hepatitis B Virus-Related Cirrhosis |
title_full | An MRI-Based Radiomic Model for Individualized Prediction of Hepatocellular Carcinoma in Patients With Hepatitis B Virus-Related Cirrhosis |
title_fullStr | An MRI-Based Radiomic Model for Individualized Prediction of Hepatocellular Carcinoma in Patients With Hepatitis B Virus-Related Cirrhosis |
title_full_unstemmed | An MRI-Based Radiomic Model for Individualized Prediction of Hepatocellular Carcinoma in Patients With Hepatitis B Virus-Related Cirrhosis |
title_short | An MRI-Based Radiomic Model for Individualized Prediction of Hepatocellular Carcinoma in Patients With Hepatitis B Virus-Related Cirrhosis |
title_sort | mri-based radiomic model for individualized prediction of hepatocellular carcinoma in patients with hepatitis b virus-related cirrhosis |
topic | Oncology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8964115/ https://www.ncbi.nlm.nih.gov/pubmed/35359425 http://dx.doi.org/10.3389/fonc.2022.800787 |
work_keys_str_mv | AT weiyichen anmribasedradiomicmodelforindividualizedpredictionofhepatocellularcarcinomainpatientswithhepatitisbvirusrelatedcirrhosis AT gongjie anmribasedradiomicmodelforindividualizedpredictionofhepatocellularcarcinomainpatientswithhepatitisbvirusrelatedcirrhosis AT hexin anmribasedradiomicmodelforindividualizedpredictionofhepatocellularcarcinomainpatientswithhepatitisbvirusrelatedcirrhosis AT liubo anmribasedradiomicmodelforindividualizedpredictionofhepatocellularcarcinomainpatientswithhepatitisbvirusrelatedcirrhosis AT liutiejun anmribasedradiomicmodelforindividualizedpredictionofhepatocellularcarcinomainpatientswithhepatitisbvirusrelatedcirrhosis AT yangshuohui anmribasedradiomicmodelforindividualizedpredictionofhepatocellularcarcinomainpatientswithhepatitisbvirusrelatedcirrhosis AT zhouzhipeng anmribasedradiomicmodelforindividualizedpredictionofhepatocellularcarcinomainpatientswithhepatitisbvirusrelatedcirrhosis AT lianglingyan anmribasedradiomicmodelforindividualizedpredictionofhepatocellularcarcinomainpatientswithhepatitisbvirusrelatedcirrhosis AT zhansonghua anmribasedradiomicmodelforindividualizedpredictionofhepatocellularcarcinomainpatientswithhepatitisbvirusrelatedcirrhosis AT xiaziqiang anmribasedradiomicmodelforindividualizedpredictionofhepatocellularcarcinomainpatientswithhepatitisbvirusrelatedcirrhosis AT duangaoxiong anmribasedradiomicmodelforindividualizedpredictionofhepatocellularcarcinomainpatientswithhepatitisbvirusrelatedcirrhosis AT linbin anmribasedradiomicmodelforindividualizedpredictionofhepatocellularcarcinomainpatientswithhepatitisbvirusrelatedcirrhosis AT hanqiuli anmribasedradiomicmodelforindividualizedpredictionofhepatocellularcarcinomainpatientswithhepatitisbvirusrelatedcirrhosis AT lishasha anmribasedradiomicmodelforindividualizedpredictionofhepatocellularcarcinomainpatientswithhepatitisbvirusrelatedcirrhosis AT qinwei anmribasedradiomicmodelforindividualizedpredictionofhepatocellularcarcinomainpatientswithhepatitisbvirusrelatedcirrhosis AT pickhardtperryj anmribasedradiomicmodelforindividualizedpredictionofhepatocellularcarcinomainpatientswithhepatitisbvirusrelatedcirrhosis AT dengdemao anmribasedradiomicmodelforindividualizedpredictionofhepatocellularcarcinomainpatientswithhepatitisbvirusrelatedcirrhosis AT weiyichen mribasedradiomicmodelforindividualizedpredictionofhepatocellularcarcinomainpatientswithhepatitisbvirusrelatedcirrhosis AT gongjie mribasedradiomicmodelforindividualizedpredictionofhepatocellularcarcinomainpatientswithhepatitisbvirusrelatedcirrhosis AT hexin mribasedradiomicmodelforindividualizedpredictionofhepatocellularcarcinomainpatientswithhepatitisbvirusrelatedcirrhosis AT liubo mribasedradiomicmodelforindividualizedpredictionofhepatocellularcarcinomainpatientswithhepatitisbvirusrelatedcirrhosis AT liutiejun mribasedradiomicmodelforindividualizedpredictionofhepatocellularcarcinomainpatientswithhepatitisbvirusrelatedcirrhosis AT yangshuohui mribasedradiomicmodelforindividualizedpredictionofhepatocellularcarcinomainpatientswithhepatitisbvirusrelatedcirrhosis AT zhouzhipeng mribasedradiomicmodelforindividualizedpredictionofhepatocellularcarcinomainpatientswithhepatitisbvirusrelatedcirrhosis AT lianglingyan mribasedradiomicmodelforindividualizedpredictionofhepatocellularcarcinomainpatientswithhepatitisbvirusrelatedcirrhosis AT zhansonghua mribasedradiomicmodelforindividualizedpredictionofhepatocellularcarcinomainpatientswithhepatitisbvirusrelatedcirrhosis AT xiaziqiang mribasedradiomicmodelforindividualizedpredictionofhepatocellularcarcinomainpatientswithhepatitisbvirusrelatedcirrhosis AT duangaoxiong mribasedradiomicmodelforindividualizedpredictionofhepatocellularcarcinomainpatientswithhepatitisbvirusrelatedcirrhosis AT linbin mribasedradiomicmodelforindividualizedpredictionofhepatocellularcarcinomainpatientswithhepatitisbvirusrelatedcirrhosis AT hanqiuli mribasedradiomicmodelforindividualizedpredictionofhepatocellularcarcinomainpatientswithhepatitisbvirusrelatedcirrhosis AT lishasha mribasedradiomicmodelforindividualizedpredictionofhepatocellularcarcinomainpatientswithhepatitisbvirusrelatedcirrhosis AT qinwei mribasedradiomicmodelforindividualizedpredictionofhepatocellularcarcinomainpatientswithhepatitisbvirusrelatedcirrhosis AT pickhardtperryj mribasedradiomicmodelforindividualizedpredictionofhepatocellularcarcinomainpatientswithhepatitisbvirusrelatedcirrhosis AT dengdemao mribasedradiomicmodelforindividualizedpredictionofhepatocellularcarcinomainpatientswithhepatitisbvirusrelatedcirrhosis |