Cargando…

Machine Learning and Deep Learning Applications in Metagenomic Taxonomy and Functional Annotation

Shotgun sequencing of environmental DNA (i.e., metagenomics) has revolutionized the field of environmental microbiology, allowing the characterization of all microorganisms in a sequencing experiment. To identify the microbes in terms of taxonomy and biological activity, the sequenced reads must nec...

Descripción completa

Detalles Bibliográficos
Autores principales: Mathieu, Alban, Leclercq, Mickael, Sanabria, Melissa, Perin, Olivier, Droit, Arnaud
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8964132/
https://www.ncbi.nlm.nih.gov/pubmed/35359727
http://dx.doi.org/10.3389/fmicb.2022.811495
Descripción
Sumario:Shotgun sequencing of environmental DNA (i.e., metagenomics) has revolutionized the field of environmental microbiology, allowing the characterization of all microorganisms in a sequencing experiment. To identify the microbes in terms of taxonomy and biological activity, the sequenced reads must necessarily be aligned on known microbial genomes/genes. However, current alignment methods are limited in terms of speed and can produce a significant number of false positives when detecting bacterial species or false negatives in specific cases (virus, plasmids, and gene detection). Moreover, recent advances in metagenomics have enabled the reconstruction of new genomes using de novo binning strategies, but these genomes, not yet fully characterized, are not used in classic approaches, whereas machine and deep learning methods can use them as models. In this article, we attempted to review the different methods and their efficiency to improve the annotation of metagenomic sequences. Deep learning models have reached the performance of the widely used k-mer alignment-based tools, with better accuracy in certain cases; however, they still must demonstrate their robustness across the variety of environmental samples and across the rapid expansion of accessible genomes in databases.