Cargando…
Explanation-Driven Deep Learning Model for Prediction of Brain Tumour Status Using MRI Image Data
Cancer research has seen explosive development exploring deep learning (DL) techniques for analysing magnetic resonance imaging (MRI) images for predicting brain tumours. We have observed a substantial gap in explanation, interpretability, and high accuracy for DL models. Consequently, we propose an...
Autores principales: | Gaur, Loveleen, Bhandari, Mohan, Razdan, Tanvi, Mallik, Saurav, Zhao, Zhongming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8964286/ https://www.ncbi.nlm.nih.gov/pubmed/35360838 http://dx.doi.org/10.3389/fgene.2022.822666 |
Ejemplares similares
-
Detecting COVID-19 infection status from chest X-ray and CT scan via single transfer learning-driven approach
por: Ghose, Partho, et al.
Publicado: (2022) -
Auguring Fake Face Images Using Dual Input Convolution Neural Network
por: Bhandari, Mohan, et al.
Publicado: (2022) -
A Deep Learning–Based Framework for Supporting Clinical Diagnosis of Glioblastoma Subtypes
por: Munquad, Sana, et al.
Publicado: (2022) -
An Ensemble-Based Deep Convolutional Neural Network for Computer-Aided Polyps Identification From Colonoscopy
por: Sharma, Pallabi, et al.
Publicado: (2022) -
Breast cancer detection: Shallow convolutional neural network against deep convolutional neural networks based approach
por: Das, Himanish Shekhar, et al.
Publicado: (2023)