Cargando…
Prediction of Myocardial Infarction From Patient Features With Machine Learning
This study proposes machine learning-based models to automatically evaluate the severity of myocardial infarction (MI) from physiological, clinical, and paraclinical features. Two types of machine learning models are investigated for the MI assessment: the classification models classify the presence...
Autores principales: | Chen, Zhihao, Shi, Jixi, Pommier, Thibaut, Cottin, Yves, Salomon, Michel, Decourselle, Thomas, Lalande, Alain, Couturier, Raphaël |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8964399/ https://www.ncbi.nlm.nih.gov/pubmed/35369326 http://dx.doi.org/10.3389/fcvm.2022.754609 |
Ejemplares similares
-
Automatic classification of patients with myocardial infarction or myocarditis based only on clinical data: A quick response
por: Rahman, Sheikh Shah Mohammad Motiur, et al.
Publicado: (2023) -
Efficiency and effectiveness of intensive multidisciplinary follow-up of patients with stroke/TIA or myocardial infarction compared to usual monitoring: protocol of a pragmatic randomised clinical trial. DiVa (Dijon vascular) study
por: Béjot, Yannick, et al.
Publicado: (2023) -
Identification of hub biomarkers of myocardial infarction by single-cell sequencing, bioinformatics, and machine learning
por: Zhang, Qunhui, et al.
Publicado: (2022) -
Ensemble learning of myocardial displacements for myocardial infarction detection in echocardiography
por: Nguyen, Tuan, et al.
Publicado: (2023) -
More than 50% of Persistent Myocardial Scarring at One Year in “Infarct-like” Acute Myocarditis Evaluated by CMR
por: Pommier, Thibaut, et al.
Publicado: (2021)