Cargando…
Prediction of non-muscle invasive bladder cancer recurrence using machine learning of quantitative nuclear features
Non-muscle invasive bladder cancer (NMIBC) generally has a good prognosis; however, recurrence after transurethral resection (TUR), the standard primary treatment, is a major problem. Clinical management after TUR has been based on risk classification using clinicopathological factors, but these cla...
Autores principales: | Tokuyama, Naoto, Saito, Akira, Muraoka, Ryu, Matsubara, Shuya, Hashimoto, Takeshi, Satake, Naoya, Matsubayashi, Jun, Nagao, Toshitaka, Mirza, Aashiq H., Graf, Hans-Peter, Cosatto, Eric, Wu, Chin-Lee, Kuroda, Masahiko, Ohno, Yoshio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8964412/ https://www.ncbi.nlm.nih.gov/pubmed/34716417 http://dx.doi.org/10.1038/s41379-021-00955-y |
Ejemplares similares
-
Recurrence prediction in clear cell renal cell carcinoma using machine learning of quantitative nuclear features
por: Matsubara, Shuya, et al.
Publicado: (2023) -
Development of multiple AI pipelines that predict neoadjuvant chemotherapy response of breast cancer using H&E‐stained tissues
por: Shen, Bin, et al.
Publicado: (2023) -
Quantitative nucleic features are effective for discrimination of intraductal proliferative lesions of the breast
por: Yamada, Masatoshi, et al.
Publicado: (2016) -
Pathological Diagnosis of Gastric Cancers with a Novel Computerized Analysis System
por: Oikawa, Kosuke, et al.
Publicado: (2017) -
A novel method for morphological pleomorphism and heterogeneity quantitative measurement: Named cell feature level co-occurrence matrix
por: Saito, Akira, et al.
Publicado: (2016)