Cargando…
Predicting Functional Connectivity From Observed and Latent Structural Connectivity via Eigenvalue Mapping
Understanding how complex dynamic activity propagates over a static structural network is an overarching question in the field of neuroscience. Previous work has demonstrated that linear graph-theoretic models perform as well as non-linear neural simulations in predicting functional connectivity wit...
Autores principales: | Cummings, Jennifer A., Sipes, Benjamin, Mathalon, Daniel H., Raj, Ashish |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8964629/ https://www.ncbi.nlm.nih.gov/pubmed/35368264 http://dx.doi.org/10.3389/fnins.2022.810111 |
Ejemplares similares
-
Remotely Sensed Image Classification by Complex Network Eigenvalue and Connected Degree
por: Xu, Mengxi, et al.
Publicado: (2012) -
Latent and Abnormal Functional Connectivity Circuits in Autism Spectrum Disorder
por: Chen, Shuo, et al.
Publicado: (2017) -
Knowledge Synthesis with Maps of Neural Connectivity
por: Tallis, Marcelo, et al.
Publicado: (2011) -
Tree representations of brain structural connectivity via persistent homology
por: Li, Didong, et al.
Publicado: (2023) -
Dynamic Functional Connectivity Better Predicts Disability Than Structural and Static Functional Connectivity in People With Multiple Sclerosis
por: Tozlu, Ceren, et al.
Publicado: (2021)