Cargando…
Dynamic cyber risk estimation with competitive quantile autoregression
The increasing value of data held in enterprises makes it an attractive target to attackers. The increasing likelihood and impact of a cyber attack have highlighted the importance of effective cyber risk estimation. We propose two methods for modelling Value-at-Risk (VaR) which can be used for any t...
Autores principales: | Dzhamtyrova, Raisa, Maple, Carsten |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8964664/ https://www.ncbi.nlm.nih.gov/pubmed/35401030 http://dx.doi.org/10.1007/s10618-021-00814-z |
Ejemplares similares
-
Competitive Online Quantile Regression
por: Dzhamtyrova, Raisa, et al.
Publicado: (2020) -
A Spatial Autoregressive Quantile Regression to Examine Quantile Effects of Regional Factors on Crash Rates
por: Yu, Tianjian, et al.
Publicado: (2021) -
Minimum distance quantile regression for spatial autoregressive panel data models with fixed effects
por: Dai, Xiaowen, et al.
Publicado: (2021) -
Public Health Expenditures and Health Outcomes in Pakistan: Evidence from Quantile Autoregressive Distributed Lag Model
por: Ullah, Irfan, et al.
Publicado: (2021) -
Cyber security in the age of COVID-19: A timeline and analysis of cyber-crime and cyber-attacks during the pandemic
por: Lallie, Harjinder Singh, et al.
Publicado: (2021)