Cargando…
Resting state fast brain dynamics predict interindividual variability in motor performance
Motor learning features rapid enhancement during practice then offline post-practice gains with the reorganization of related brain networks. We hypothesised that fast transient, sub-second variations in magnetoencephalographic (MEG) network activity during the resting-state (RS) reflect early learn...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8964712/ https://www.ncbi.nlm.nih.gov/pubmed/35351907 http://dx.doi.org/10.1038/s41598-022-08767-z |
Sumario: | Motor learning features rapid enhancement during practice then offline post-practice gains with the reorganization of related brain networks. We hypothesised that fast transient, sub-second variations in magnetoencephalographic (MEG) network activity during the resting-state (RS) reflect early learning-related plasticity mechanisms and/or interindividual motor variability in performance. MEG RS activity was recorded before and 20 min after motor learning. Hidden Markov modelling (HMM) of MEG power envelope signals highlighted 8 recurrent topographical states. For two states, motor performance levels were associated with HMM temporal parameters both in pre- and post-learning resting-state sessions. However, no association emerged with offline changes in performance. These results suggest a trait-like relationship between spontaneous transient neural dynamics at rest and interindividual variations in motor abilities. On the other hand, transient RS dynamics seem not to be state-dependent, i.e., modulated by learning experience and reflect neural plasticity, at least on the short timescale. |
---|