Cargando…
Native range estimates for red-listed vascular plants
Besides being central for understanding both global biodiversity patterns and associated anthropogenic impacts, species range maps are currently only available for a small subset of global biodiversity. Here, we provide a set of assembled spatial data for terrestrial vascular plants listed at the gl...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8964733/ https://www.ncbi.nlm.nih.gov/pubmed/35351917 http://dx.doi.org/10.1038/s41597-022-01233-5 |
Sumario: | Besides being central for understanding both global biodiversity patterns and associated anthropogenic impacts, species range maps are currently only available for a small subset of global biodiversity. Here, we provide a set of assembled spatial data for terrestrial vascular plants listed at the global IUCN red list. The dataset consists of pre-defined native regions for 47,675 species, density of available native occurrence records for 30,906 species, and standardized, large-scale Maxent predictions for 27,208 species, highlighting environmentally suitable areas within species’ native regions. The data was generated in an automated approach consisting of data scraping and filtering, variable selection, model calibration and model selection. Generated Maxent predictions were validated by comparing a subset to available expert-drawn range maps from IUCN (n = 4,257), as well as by qualitatively inspecting predictions for randomly selected species. We expect this data to serve as a substitute whenever expert-drawn species range maps are not available for conducting large-scale analyses on biodiversity patterns and associated anthropogenic impacts. |
---|